Skip to main content
Log in

Antipredator responses of the morphs of an amphibian species match their differential predation pressures

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Escape efficiency typically relies on locomotor performance, which depends on morphology. Moreover, flight initiation distance (FID, the distance from an approaching predator at which a prey starts flight) is behaviourally adjusted to minimize the costs of escape. When conspecifics with distinct heritable traits are subjected to differential predator pressure, specialized antipredator strategies may evolve. Phenotypic variants associated to sex and other polymorphisms may be susceptible of suffering predator attacks to different extents. Herein, we used striped and mottled morphs of the polymorphic frog Discoglossus galganoi to test for differences between morphs and sex in predation pressure and concomitant antipredator responses. Firstly, we used plasticine models to assess predation pressure (by a natural set of local predators ranging from snakes to birds and mammals) on both striped and mottled morphs. Then, we tested for differences on morphology, locomotor performance, FID, and their interactions between morphs and sexes. Striped models were more often attacked, which suggests that striped frogs are under stronger predation pressure. Morphology was similar between morphs, and so was locomotor performance. However, FID was greater in striped than in mottled individuals. Contrastingly, sexes did not differ in FID, but males had longer limbs and greater locomotor performance than females, which is common in other taxa. Nonetheless, both sexes displayed similar FID. Finally, FID was greater in larger individuals, but unrelated to locomotor performance. These results support the hypothesis that different antipredator strategies are tuned to divergent predation risk suffered by sexes and morphs.

Significance statement

Even within a species, individuals with different characteristics may undergo dissimilar selective pressures. If these traits are heritable, concomitantly divergent responses to such pressures may evolve. One of the most evident sources of intraspecific variation is sex. However, each morph in polymorphic species may also suffer divergent pressures. Among selective pressures, predation is of outstanding relevance due to its devastating effects on prey’s fitness. Herein, using plasticine models of the stripped and the mottled morph of Discoglossus galganoi frogs, we confirm that predator pressure varies between morphs (strong evidence already suggests that male anurans are under greater predation pressure than females). The antipredator responses of actual males and females of both morphs are accordingly adjusted: locomotor performance is greater in males, whereas striped individuals, which are under stronger predation pressure, start fleeing an approaching sham predator at greater distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Code availability

Not applicable.

References

  • Arbuckle K, Speed MP (2015) Antipredator defenses predict diversification rates. P Natl Acad Sci USA 112:13597–13602

    Article  CAS  Google Scholar 

  • Barnett JB, Michalis C, Scott-Samuel NE, Cuthill IC (2018) Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. P Natl Acad Sci USA 115:6416–6421

    Article  CAS  Google Scholar 

  • Barton K (2020) Package ‘MuMIn’. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Accessed 29 Jan 2022

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7. http://cran.r-project.org/package=lme4. Accessed 29 Jan 2022

  • Blanco G, Bertellotti M (2002) Differential predation by mammals and birds: implications for egg-colour polymorphism in a nomadic breeding seabird. Biol J Linn Soc 75:137–146

    Article  Google Scholar 

  • Blumstein DT, Flores G, Munoz NE (2015) Does locomotor ability influence flight initiation distance in yellow-bellied marmots? Ethology 121:434–441

    Article  Google Scholar 

  • Botton-Divet L, Cornette R, Houssaye A, Fabre AC, Herrel A (2017) Swimming and running: a study of the convergence in long bone morphology among semi-aquatic mustelids (Carnivora: Mustelidae). Biol J Linn Soc 121:38–49

    Article  Google Scholar 

  • Boukal DS, Berec L, Křivan V (2008) Does sex-selective predation stabilize or destabilize predator-prey dynamics? PLoS One 3:e2687

  • Brijs J, Sandblom E, Sundh H, Gräns A, Hinchcliffe J, Ekström A, Sundell K, Olsson C, Axelsson M, Pichaud N (2017) Increased mitochondrial coupling and anaerobic capacity minimizes aerobic costs of trout in the sea. Sci Rep 7:45778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock KM, Bednekoff PA, Pafilis P, Foufopoulos J (2015) Evolution of antipredator behavior in an island lizard species, Podarcis ehrardii (Reptilia: Lacertidae): the sum of all fears? Evolution 69:216–231

    Article  PubMed  Google Scholar 

  • Brodie ED (1989) Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature 342:542–543

    Article  PubMed  Google Scholar 

  • Brodie ED (1993) Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47:227–235

    Article  PubMed  Google Scholar 

  • Cain KE, Hall ML, Medina I et al (2019) Conspicuous plumage does not increase predation risk: a continent-wide test using model songbirds. Am Nat 193:359–372

    Article  PubMed  Google Scholar 

  • Calsbeek R (2008) An ecological twist on the morphology–performance–fitness axis. Evol Ecol Res 10:197–212

    Google Scholar 

  • Calsbeek R, Cox RM (2012) An experimental test of the role of predators in the maintenance of a genetically based polymorphism. J Evol Biol 25:2091–2101

    Article  CAS  PubMed  Google Scholar 

  • Capizzi D, Luiselli L, Vignoli L (2007) Flight initiation distance in relation to substratum type, sex, reproductive status and tail condition in two lacertids with contrasting habits. Amphib-Reptilia 28:403–407

    Article  Google Scholar 

  • Carlson BE, McGinley S, Rowe MP (2014) Meek males and fighting females: sexually-dimorphic antipredator behavior and locomotor performance is explained by morphology in bark scorpions (Centruroides vittatus). PLoS ONE 9:e97648

  • Clark DL, Peters SE (2006) Isometric contractile properties of sexually dimorphic forelimb muscles in the marine toad Bufo marinus Linnaeus 1758: functional analysis and implications for amplexus. J Exp Biol 209:3448–3456

    Article  Google Scholar 

  • Cooper WE (2003a) Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Can J Zool 81:979–984

    Article  Google Scholar 

  • Cooper WE (2003b) Sexual dimorphism in distance from cover but not scape behavior by the keeled earless lizard Holbrookia propinqua. J Herpetol 37:374–378

    Article  Google Scholar 

  • Cooper WE (2006) Dynamic risk assessment: prey rapidly adjust flight initiation distance to changes in predator approach speed. Ethology 112:858–864

    Article  Google Scholar 

  • Cooper WE, Attum O, Kingsbury B (2008) Escape behaviors and flight initiation distance in the common water snake Nerodia sipedon. J Herpetol 42:493–500

    Article  Google Scholar 

  • Cooper WE, Frederik WG (2007) Optimal flight initiation distance. J Theor Biol 244:59–67

    Article  PubMed  Google Scholar 

  • Cooper WE, Pérez-Mellado V, Baird T, Baird TA, Caldwell JP, Vitt LJ (2003) Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav Ecol 14:288–293

    Article  Google Scholar 

  • Cooper WE, Sherbrooke WC (2010) Crypsis influences escape decisions in the round-tailed horned lizard (Phrynosoma modestum). Can J Zool 88:1003–1010

    Article  Google Scholar 

  • Day LM, Jayne BC (2007) Interspecific scaling of the morphology and posture of the limbs during locomotion in cats (Felidae). J Exp Biol 210:642–654

    Article  PubMed  Google Scholar 

  • de Meester L, Weider LJ, Tollrian R (1995) Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378:483–485

    Article  Google Scholar 

  • Dill LM, Houtman R (1989) The influence of distance to refuge on flight initiation distance in the gray squirrel (Sciurus carolinensis). Can J Zool 67:233–235

    Article  Google Scholar 

  • Downes SJ (2002) Size-dependent predation by snakes: selective foraging or differential prey vulnerability? Behav Ecol 13:551–560

    Article  Google Scholar 

  • Dugas MB, Halbrook SR, Killius AM, del Sol JF, Richards-Zawacki CL (2015) Colour and escape behaviour in polymorphic populations of an aposematic poison frog. Ethology 121:813–822

    Article  Google Scholar 

  • Farallo VR, Forstner MRJ (2012) Predation and the maintenance of color polymorphism in a habitat specialist squamate. PLoS ONE 7:e30316

  • Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford EB (1945) Polymorphism. Biol Rev 20:73–88

    Article  Google Scholar 

  • Galeotti P, Rubolini D, Dunn PO, Fasola M (2003) Colour polymorphism in birds: causes and functions. J Evol Biol 16:635–646

    Article  CAS  PubMed  Google Scholar 

  • García-París M (2004) Anura. In: García-París M, Montori A, Herrero P (eds) Fauna Ibérica, vol. 24. Amphibia, Lissamphibia. Museo Nacional de Ciencias Naturales, CSIC, Madrid

  • Geipel I, Kernan CE, Litterer AS, Carter GG, Page RA, ter Hofstede HM (2020) Predation risks of signalling and searching: bats prefer moving katydids. Biol Lett 16:20190837

    Article  PubMed  PubMed Central  Google Scholar 

  • Götmark F, Hohlfält A (1995) Bright male plumage and predation risk in passerine birds: are males easier to detect than females? Oikos 74:475–484

    Article  Google Scholar 

  • Grossi B, Solis R, Veloso C, Canals M (2016) Consequences of sexual size dimorphism on energetics and locomotor performance of Grammostola rosea (Araneae; Teraphosidae). Physiol Entomol 41:281–288

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws R, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hamill E, Rogers A, Beckerman AP (2008) Costs, benefits and the evolution of inducible defenses: a case study with Daphnia pulex. J Evol Biol 21:705–715

    Article  Google Scholar 

  • Hermann SL, Thaler JS (2014) Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. Oecologia 176:669–676

    Article  PubMed  Google Scholar 

  • Herrel A, Vasilopoulou-Kampitsi M, Bonneaud C (2012) Intersexual differences in body shape and locomotor performance in the aquatic frog, Xenopus tropicalis. J Zool 287:311–316

    Article  Google Scholar 

  • Higham TE, Gamble T, Russell AP (2017) On the origin of frictional adhesion in geckos: small morphological changes lead to a major biomechanical transition in the genus Gonatodes. Biol J Linn Soc 120:503–517

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive vs behavioral inertia in evolution: a null model approach. Am Nat 161:357–366

    Article  PubMed  Google Scholar 

  • Husak JF (2006) Does speed help you survive? A test with collared lizards of different ages. Funct Ecol 20:174–179

    Article  Google Scholar 

  • Husak JF, Fox SF (2008) Sexual selection on locomotor performance. Evol Ecol Res 10:213–228

    Google Scholar 

  • Husak JF, Macedonia JM, Fox SF, Sauceda RC (2005) Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology 112:572–580

    Article  Google Scholar 

  • Huxley J (1955) Morphism and evolution. Heredity 9:1–52

    Article  Google Scholar 

  • Huyghe K, Vanhooydonck B, Herrel A, Tadić Z, Van Damme R (2007) Morphology, performance, behavior and ecology of three color morphs in males of the lizard Podarcis melisellensis. Integr Comp Biol 47:211–220

    Article  PubMed  Google Scholar 

  • Jackson JF, Ingram W, Campbell HW (1976) The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. Am Nat 110:1029–1053

    Article  Google Scholar 

  • Jayne BC, Bennett AF (1990) Selection on locomotor performance capacity in a natural population of garter snake. Evolution 44:1204–1229

    Article  PubMed  Google Scholar 

  • Kalb N, Anger F, Randler C (2019) Flight initiation distance and escape behavior in the black redstart (Phoenicurus ochruros). Ethology 125:430–438

    Article  Google Scholar 

  • Karpestam E, Merilaita S, Forsman A (2014) Body size influences differently the detectabilities of color morphs of cryptic prey. Biol J Linn Soc 113:112–122

    Article  Google Scholar 

  • Kelley JL, Magurran AE (2003) Effects of relaxed predation pressure on visual predator recognition in the guppy. Behav Ecol Sociobiol 54:225–232

    Article  Google Scholar 

  • Kooijman SALM (2009) Dynamic energy budget theory for metabolic organisation, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Kotiaho J, Alatalo RV, Mappes J, Parri S, Rivero A (1998) Male mating success and risk of predation in a wolf spider: a balance between sexual and natural selection? J Anim Ecol 67:287–291

    Article  Google Scholar 

  • Krause J, Godin J-GJ (1995) Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and prey predation risk. Anim Behav 50:465–473

    Article  Google Scholar 

  • Kuznetsova A (2020) Package ‘lmerTest’. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf. Accessed 29 Jan 2022

  • Lagos PA, Ebensperger LA, Herberstein ME (2014) A quantitative test of the “economic” and “optimal” models of escape behaviour. Anim Behav 97:221–227

    Article  Google Scholar 

  • Langerhans RB (2006) Evolutionary consequences of predation: avoidance, escape, reproduction, and diversification. In: Elewa AMT (ed) Predation in Organisms: A Distinct Phenomenon. Springer Verlag, Heidelberg

  • Lees JJ, Nudds RL, Folkow LP, Stokkan KA, Codd JR (2012) Understanding sex differences in the cost of terrestrial locomotion. Proc R Soc Lond B 279:826–832

    Google Scholar 

  • Li J, Lin X, Zhou C, Zeng P, Xu Z, Sun J (2016) Sexual dimorphism and its relationship with swimming performance in Tanichthys albonubes under laboratory conditions. Chin J Appl Ecol 27:1639–1646

    Google Scholar 

  • Lind J, Cresswell W (2005) Determining the fitness consequences of antipredator behavior. Behav Ecol 16:945–956

    Article  Google Scholar 

  • Madsen T (1987) Are juvenile grass snakes, Natrix natrix, aposematically colored? Oikos 48:265–267

    Article  Google Scholar 

  • Marshall KLA, Philpot KE, Stevens M (2015) Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards (Podarcis erhardii). Ecol Evol 5:4115–4131

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín J, López P (2000) Fleeing to unsafe refuges: effects of conspicuousness and refuge safety on the escape decisions of the lizard Psammodromus algirus. Can J Zool 78:265–270

    Article  Google Scholar 

  • Martínez-Solano I (2014) Sapillo pintojo ibérico – Discoglossus galganoi. In: Salvador A, Martínez-Solano I (eds) Enciclopedia Virtual de los Vertebrados Españoles . Museo Nacional de Ciencias Naturales, Madrid

  • McGee MR, Julius ML, Vajda AM, Norris DO, Barber LB, Schoenfuss HL (2009) Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures. Aquat Toxicol 91:355–361

    Article  CAS  PubMed  Google Scholar 

  • Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Møller AP, Liang W, Samia DSM (2019) Flight initiation distance, color and camouflage. Curr Zool 65:535–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore TY, Biewener AA (2015) Outrun or outmaneuver: predator-prey interactions as a model system for integrating biomechanical studies in a broader ecological and evolutionary context. Integr Comp Biol 55:1188–1197

    PubMed  Google Scholar 

  • Moreno-Rueda G (2003) The capacity to escape from predators in Passer domesticus: an experimental study. J Ornithol 144:438–444

    Google Scholar 

  • Moreno-Rueda G, Requena-Blanco A, Zamora-Camacho F, Comas M, Pascual G (2020) Morphological determinants of jumping performance in the Iberian green frog. Curr Zool 66:417–424

    Article  PubMed  Google Scholar 

  • Navas CA, James RS (2007) Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758. J Exp Biol 210:715–721

    Article  PubMed  Google Scholar 

  • Nonacs P, Blumstein DT (2010) Predation risk and behavioral life history. In: Westneat DF, Fox CW (eds) Evolutionary behavioral ecology. Oxford University Press, New York

  • Noonan BP, Comeault AA (2008) The role of predator selection on polymorphic aposematic poison frogs. Biol Lett 5:51–54

    Article  PubMed Central  Google Scholar 

  • O’Steen S, Cullum AJ, Bennett AF (2002) Rapid evolution of escape ability in Trinidadian guppies (Poecilia reticulata). Evolution 56:776–784

    Article  PubMed  Google Scholar 

  • Otth A (1837) Beschreibung einer neuen europäis-chen Froschgattung, Discoglossus. Neue Denkschr Allg Schweiz Ges Naturw 1:1–8

    Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  • Preest MR, Pough FH (1989) Interaction of temperature and hydration on locomotion of toads. Funct Ecol 3:693–699

    Article  Google Scholar 

  • Preisser EL, Bolnick DI, Grabowski JH (2009) Resource dynamics influence the strength of non-consumptive predator effects on prey. Ecol Lett 12:315–323

    Article  PubMed  Google Scholar 

  • Promislow DEL, Montgomerie R, Martin TE (1992) Mortality costs of sexual dimorphism in birds. Proc R Soc Lond B 250:143–150

    Article  Google Scholar 

  • Qi Y, Noble DWA, Wu Y, Whiting MJ (2014) Sex- and performance-based escape behaviour in an Asian agamid lizard, Phrynocephalus vlangalii. Behav Ecol Sociobiol 68:2035–2042

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Relyea RA (2001) Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540

    Article  Google Scholar 

  • Rombough P (2011) The energetic of embryonic growth. Resp Physiol Neurobiol 178:22–29

    Article  Google Scholar 

  • Santos X, Azor JS, Cortés S, Rodríguez E, Larios J, Pleguezuelos JM (2018) Ecological significance of dorsal polymorphism in a Batesian mimic snake. Curr Zool 64:745–753

    PubMed  Google Scholar 

  • Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA (2007) Experimental evidence for aposematism in the Dendrobatid poison frog Oophaga pumilio. Copeia 2007:1006–1011

    Article  Google Scholar 

  • Sazima I (2006) Theatrical frogs and crafty snakes: predation of visually-signalling frogs by tail-luring and ambushing pitvipers. J Ichthyol Aquat Biol 11:117–124

    Google Scholar 

  • Snell HL, Jennings RD, Snell HM, Harcourt S (1988) Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: the interaction of sexual and natural selection. Evol Ecol 2:353–369

    Article  Google Scholar 

  • Sorci G, Faivre B (2009) Inflammation and oxidative stress in vertebrate host–parasite systems. Phil Trans R Soc B 364:71–83

    Article  PubMed  Google Scholar 

  • Sreekar R, Goodale E, Harrison RD (2015) Flight initiation distance as behavioral indicator of hunting pressure: a case study of the sooty-headed bulbul (Pyctonotus aurigaster) in Xishuangbanna, SW China. Trop Conserv Sci 8:505–512

    Article  Google Scholar 

  • Stankowich T, Blumstein DT (2005) Fear in animals: a meta-analysis and review of risk assessment. Proc R Soc Lond B 272:2627–2634

    Google Scholar 

  • Stiller RB, McBrayer LD (2013) The ontogeny of escape behavior, locomotor performance, and the hind limb in Sceloporus woodi. Zoology 116:175–181

    Article  PubMed  Google Scholar 

  • Surmacki A, Ożarowska-Nowicka A, Rosin ZM (2013) Color polymorphism in a land snail Cepaea nemoralis (Pulmonata: Helicidae) as viewed by potential avian predators. Naturwissenschaften 100:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K (2008) Putting ourselves in a striped snake’s shoes: thermal sensitivity of locomotor performance in a melanistic/striped colour-dimorphic snake. Acta Zool 89:211–218

    Article  Google Scholar 

  • Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running. A comparison of large and small animals. J Exp Biol 86:9–18

    Article  Google Scholar 

  • Tobler M, Franssen CM, Plath M (2008) Male-biased predation of a cave fish by a giant aquatic bug. Naturwissenschaften 95:775–779

    Article  CAS  PubMed  Google Scholar 

  • Toledo LF, Ribeiro RS, Haddad CBF (2007) Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J Zool 271:170–177

    Article  Google Scholar 

  • Van Damme R, Entin P, Vanhooydonck B, Herrel A (2008) Causes of sexual dimorphism in performance traits: a comparative approach. Evol Ecol Res 10:229–250

    Google Scholar 

  • Vanhooydonck B, Measey J, Edwards S, Makhubo B, Tolley KA, Herrel A (2015) The effects of substratum on locomotor performance in lacertid lizards. Biol J Linn Soc 115:869–881

    Article  Google Scholar 

  • Ydenberg RC, Dill LM (1986) The economics of fleeing from predators. Adv Stud Behav 16:229–249

    Article  Google Scholar 

  • Zamora-Camacho FJ (2018) Locomotor performance in a running toad: roles of morphology, sex, and agrosystem versus natural habitat. Biol J Linn Soc 123:411–421

    Article  Google Scholar 

  • Zamora-Camacho FJ (2020) Toads modulate flight strategy according to distance to refuge. Zoology 139:125741

  • Zamora-Camacho FJ (2021) Sex and habitat differences in size and coloration of an amphibian’s poison glands match differential predator pressures. Integr Zool (published online, https://doi.org/10.1111/1749-4877.12597)

  • Zamora-Camacho FJ, Reguera S, Rubiño-Hispán MV, Moreno-Rueda G (2014) Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol 61:509–517

    Article  Google Scholar 

Download references

Acknowledgements

Gregorio Moreno-Rueda and Mar Comas provided logistic support. Comments by two anonymous reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FJZ-C and PA conceived the idea, designed the experiments, and analysed the data. FJZ-C performed field and laboratory work. FJZ-C led the writing of the manuscript, with substantial input from PA.

Corresponding author

Correspondence to Francisco Javier Zamora-Camacho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All applicable institutional and/or national guidelines for the care and use of animals were followed. Animal capture and management was according to permits by the Junta de Andalucía government (reference: AWG/mgd GB-526–19). Approval from an Ethics Committee was not required.

Additional information

Communicated by K. Summers

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Camacho, F.J., Aragón, P. Antipredator responses of the morphs of an amphibian species match their differential predation pressures. Behav Ecol Sociobiol 76, 26 (2022). https://doi.org/10.1007/s00265-022-03140-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-022-03140-6

Keywords

Navigation