Skip to main content

Motivation matters: lighter littermates of the domestic cat compete more successfully for meat at weaning

Abstract

Widespread recognition of the contribution of individual differences in behavioral phenotype to evolutionary processes raises questions as to their developmental origin: when and in what contexts such differences emerge and what aspects of the developmental environment contribute to these? We studied individual differences among littermates of the domestic cat Felis silvestris catus when competing for meat at weaning, a challenging period in mammalian development. During postnatal weeks six, seven, and eight, we tested 67 weanling kittens (40 males, 27 females) from 16 litters of mixed breed cats maintained as part of a free-ranging breeding colony. Twice a week, we tested the kittens’ behavior after they were food deprived and presented together with their siblings for 2 min with a highly palatable food, a piece of raw beef. We found stable individual differences among littermates across 3 weeks of testing in latency to reach the meat, time spent eating from it, time spent monopolizing it, and number of aggressive behaviors directed toward littermates. There was no effect of sex on any of the behavioral measures. However, kittens with lower body mass at birth (and then also lower body mass at the age of testing) relative to their littermates competed more vigorously and successfully for the meat than their heavier siblings. This suggests the importance of motivational factors arising during early development in shaping individual differences in behavior such as among littermates in the present study, when competing for a biologically relevant resource.

Significance statement

In polytocous mammals, body mass at birth is a good predictor of growth and survival, with heavier young relative to their littermates usually obtaining a greater share of resources such as the mother’s milk. It is therefore often assumed that this advantage will translate into differences in behavior in other contexts, such that heavier littermates will gain more resources at later life stages by showing a more aggressive, “dominant” behavioral style. The findings of the present study challenge this view by demonstrating that in the domestic cat, lighter littermates were more competitive in obtaining meat at weaning. We suggest that differences in the motivational state of individuals should also be considered when accounting for the early development of individual differences in behavior, including among littermates, and may contribute to what might be broadly considered an individual’s personality or behavioral style.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

The datasets generated during and/or analyzed during the current study are available in the Figshare Data Repository, https://doi.org/10.6084/m9.figshare.14802906.

Code availability

Not applicable.

References

  1. Adamec RE, Stark-Adamec C, Livingston KE (1980a) The development of predatory aggression and defense in the domestic cat (Felis catus): I. Effects of early experience on adult patterns of aggression and defense. Behav Neural Biol 30:389–409. https://doi.org/10.1016/S0163-1047(80)91256-X

    CAS  Article  PubMed  Google Scholar 

  2. Adamec RE, Stark-Adamec C, Livingston KE (1980b) The development of predatory aggression and defense in the domestic cat (Felis catus): II. Development of aggression and defense in the first 164 days of life. Behav Neural Biol 30:410–434. https://doi.org/10.1016/S0163-1047(80)91265-0

    CAS  Article  PubMed  Google Scholar 

  3. Adamec RE, Stark-Adamec C, Livingston KE (1980c) The development of predatory aggression and defense in the domestic cat (Felis catus): III. Effects on development of hunger between 180 and 365 days of age. Behav Neural Biol 30:435–447. https://doi.org/10.1016/S0163-1047(80)91274-1

    CAS  Article  PubMed  Google Scholar 

  4. Andersen IL, Nævdal E, Bøe KE (2011) Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behav Ecol Sociobiol 65:1159–1167. https://doi.org/10.1007/s00265-010-1128-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Antonevich AL, Naidenko SV, Bergara J, Vasques E, Vasques A, Lopez J, Pardo A, Rivas A, Chaparro JM, Martinez F (2009) A comparative note on early sibling aggression in two related species: the Iberian and the Eurasian lynx. In: Vargas A, Breitenmoser C, Breitenmoser U (eds) Iberian lynx ex situ conservation: an interdisciplinary approach. Fundación Biodiversidad, Madrid, Spain, pp 156–163

  6. Bateson P (2014) Behavioural development in the cat. In: Turner DC, Bateson P (eds) The domestic cat: the biology of its behaviour, 3rd edn. Cambridge University Press, Cambridge, UK, pp 11–26

  7. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM (2004) Developmental plasticity and human health. Nature 430:419–421. https://doi.org/10.1038/nature02725

    CAS  Article  PubMed  Google Scholar 

  8. Bautista A, Castelán F, Pérez-Roldán H, Martínez-Gómez M, Hudson R (2013) Competition in newborn rabbits for thermally advantageous positions in the litter huddle is associated with individual differences in brown fat metabolism. Physiol Behav 118:189–194. https://doi.org/10.1016/j.physbeh.2013.05.035

    CAS  Article  PubMed  Google Scholar 

  9. Bautista A, Drummond H, Martínez-Gómez M, Hudson R (2003) Thermal benefit of sibling presence in the newborn rabbit. Dev Psychobiol 43:208–215. https://doi.org/10.1002/dev.10134

    CAS  Article  PubMed  Google Scholar 

  10. Bautista A, García-Torres E, Martínez-Gómez M, Hudson R (2008) Do newborn domestic rabbits Oryctolagus cuniculus compete for thermally advantageous positions in the litter huddle? Behav Ecol Sociobiol 62:331–339. https://doi.org/10.1007/s00265-007-0420-4

    Article  Google Scholar 

  11. Bautista A, Mendoza-Degante M, Coureaud G, Martínez-Gómez M, Hudson R (2005) Scramble competition in newborn domestic rabbits for an unusually restricted milk supply. Anim Behav 70:1011–1021. https://doi.org/10.1016/j.anbehav.2005.01.015

    Article  Google Scholar 

  12. Bautista A, Rödel HG, Monclús R, Juárez-Romero M, Cruz-Sánchez E, Martínez-Gómez M, Hudson R (2015a) Intrauterine position as a predictor of postnatal growth and survival in the rabbit. Physiol Behav 138:101–106. https://doi.org/10.1016/j.physbeh.2014.10.028

    CAS  Article  PubMed  Google Scholar 

  13. Bautista A, Zepeda JA, Reyes-Meza V, Féron C, Rödel HG, Hudson R (2017) Body mass modulates huddling dynamics and body temperature profiles in rabbit pups. Physiol Behav 179:184–190. https://doi.org/10.1016/j.physbeh.2017.06.005

    CAS  Article  PubMed  Google Scholar 

  14. Bautista A, Zepeda JA, Reyes-Meza V, Martínez-Gómez M, Rödel HG, Hudson R (2015b) Contribution of within-litter interactions to individual differences in early postnatal growth in the domestic rabbit. Anim Behav 108:145–153. https://doi.org/10.1016/j.anbehav.2015.07.028

    Article  Google Scholar 

  15. Baxter E, Jarvis S, D’eath R, Ross D, Robson S, Farish M, Nevison I, Lawrence A, Edwards S, (2008) Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69:773–783. https://doi.org/10.1016/j.theriogenology.2007.12.007

  16. Benhaiem S, Hofer H, Kramer-Schadt S, Brunner E, East ML (2012) Sibling rivalry: training effects, emergence of dominance and incomplete control. Proc R Soc B Lond 279:3727–3735. https://doi.org/10.1098/rspb.2012.0925

    Article  Google Scholar 

  17. Biró Z, Lanszki J, Szemethy L, Heltai M, Randi E (2005) Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: trophic niche overlap among cat groups in Hungary. J Zool 266:187–196. https://doi.org/10.1017/S0952836905006771

    Article  Google Scholar 

  18. Campos PHRF, Silva BAN, Donzele JL, Oliveira RFM, Knol EF (2012) Effects of sow nutrition during gestation on within-litter birth weight variation: a review. Animal 6:797–806. https://doi.org/10.1017/S1751731111002242

    CAS  Article  PubMed  Google Scholar 

  19. Drummond H (2006) Dominance in vertebrate broods and litters. Q Rev Biol 81:3–32. https://doi.org/10.1086/503922

    Article  PubMed  Google Scholar 

  20. Drummond H, Vázquez E, Sánchez-Colón S, Martínez-Gómez M, Hudson R (2000) Competition for milk in the domestic rabbit: survivors benefit from littermate deaths. Ethology 106:511–526. https://doi.org/10.1046/j.1439-0310.2000.00554.x

    Article  Google Scholar 

  21. Dunn J, Plomin R (1990) Separate lives: why siblings are so different. Basic Books, New York, USA

    Google Scholar 

  22. Dunn J, Plomin R (1991) Why are siblings so different? The significance of differences in sibling experiences within the family. Fam Process 30:271–283. https://doi.org/10.1111/j.1545-5300.1991.00271.x

    CAS  Article  PubMed  Google Scholar 

  23. Fey K, Trillmich F (2008) Sibling competition in guinea pigs (Cavia aperea f. porcellus): scrambling for mother’s teats is stressful. Behav Ecol Sociobiol 62:321–329. https://doi.org/10.1007/s00265-007-0419-x

    Article  Google Scholar 

  24. Foxcroft G, Dixon W, Novak S, Putman C, Town S, Vinsky M (2006) The biological basis for prenatal programming of postnatal performance in pigs. J Anim Sci 84:E105–E112. https://doi.org/10.2527/2006.8413_supplE105x

    Article  PubMed  Google Scholar 

  25. Frafjord K (1993) Agonistic behaviour and dominance relations of captive arctic foxes (Alopex lagopus) in Svalbard. Behav Process 29:239–251. https://doi.org/10.1016/0376-6357(93)90127-D

    CAS  Article  Google Scholar 

  26. Fraser D (1989) Behavioural perspectives on piglet survival. J Reprod Fertil Suppl 40:355–370

    Google Scholar 

  27. Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85:545–569. https://doi.org/10.1111/j.1469-185X.2009.00115.x

    Article  PubMed  Google Scholar 

  28. Golla W, Hofer H, East ML (1999) Within-litter sibling aggression in spotted hyaenas: effect of maternal nursing, sex and age. Anim Behav 58:715–726. https://doi.org/10.1006/anbe.1999.1189

    CAS  Article  PubMed  Google Scholar 

  29. González D, Szenczi P, Bánszegi O, Hudson R (2018) Testing aggressive behaviour in a feeding context: importance of ethologically relevant stimuli. Behav Process 150:1–7. https://doi.org/10.1016/j.beproc.2018.02.011

    Article  Google Scholar 

  30. Groó Z, Szenczi P, Bánszegi O, Nagy Z, Altbäcker V (2018) The influence of familiarity and temperature on the huddling behavior of two mouse species with contrasting social systems. Behav Process 151:67–72. https://doi.org/10.1016/j.beproc.2018.03.007

    Article  Google Scholar 

  31. Guenther A, Trillmich F (2015) Within-litter differences in personality and physiology relate to size differences among siblings in cavies. Physiol Behav 145:22–28. https://doi.org/10.1016/j.physbeh.2015.03.026

    CAS  Article  PubMed  Google Scholar 

  32. Hartsock TG, Graves HB (1976) Piglet fighting behaviour, nursing order and growth. J Anim Sci 43:209. https://doi.org/10.2527/jas1976.431209x(abstract)

    Article  Google Scholar 

  33. Henry JD (1985) The little foxes. Nat Hist 94:46–57

    Google Scholar 

  34. Hodge SJ, Flower TP, Clutton-Brock TH (2007) Offspring competition and helper associations in cooperative meerkats. Anim Behav 74:957–964. https://doi.org/10.1016/j.anbehav.2006.10.029

    Article  Google Scholar 

  35. Hofer H, East ML (1993) The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey. III. Attendance and maternal care. Anim Behav 46:575–589. https://doi.org/10.1006/anbe.1993.1224

    Article  Google Scholar 

  36. Hofer H, East ML (1997) Skewed offspring sex ratios and sex composition of twin litters in Serengeti spotted hyaenas (Crocuta crocuta) are a consequence of siblicide. Appl Anim Behav Sci 51:307–316. https://doi.org/10.1016/S0168-1591(96)01113-6

    Article  Google Scholar 

  37. Hofer H, East ML (2008) Siblicide in Serengeti spotted hyenas: a long-term study of maternal input and cub survival. Behav Ecol Sociobiol 62:341–351. https://doi.org/10.1007/s00265-007-0421-3

    Article  Google Scholar 

  38. Hudson R, Bautista A, Reyes-Meza V, Montor JM, Rödel HG (2011) The effect of siblings on early development: a potential contributor to personality differences in mammals. Dev Psychobiol 53:564–574. https://doi.org/10.1002/dev.20535

    Article  PubMed  Google Scholar 

  39. Hudson R, Distel H (2013) Fighting by kittens and piglets during suckling: what does it mean? Ethology 119:353–359. https://doi.org/10.1111/eth.12082

    Article  Google Scholar 

  40. Hudson R, Raihani G, González D, Bautista A, Distel H (2009) Nipple preference and contests in suckling kittens of the domestic cat are unrelated to presumed nipple quality. Dev Psychobiol 51:322–332. https://doi.org/10.1002/dev.20371

    Article  PubMed  Google Scholar 

  41. Hudson R, Rangassamy M, Saldaña A, Bánszegi O, Rödel HG (2015) Stable individual differences in separation calls during early development in cats and mice. Front Zool 12:S12. https://doi.org/10.1186/1742-9994-12-S1-S12

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hudson R, Trillmich F (2008) Sibling competition and cooperation in mammals: challenges, developments and prospects. Behav Ecol Sociobiol 62:299–307. https://doi.org/10.1007/s00265-007-0417-z

    Article  Google Scholar 

  43. Huntingford FA, Turner A (1987) Animal conflict. Chapman & Hall, London, UK

    Book  Google Scholar 

  44. Izawa M, Ono Y (1986) Mother-offspring relationship in the feral cat population. J Mammal Soc Jpn 11:27–34. https://doi.org/10.11238/jmammsocjapan1952.11.27

  45. Kaufmann JH (1983) On the definitions and functions of dominance and territoriality. Biol Rev 58:1–20. https://doi.org/10.1111/j.1469-185X.1983.tb00379.x

    Article  Google Scholar 

  46. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121. https://doi.org/10.2307/4087240

  47. Luo D, Ganesh S, Koolaard J (2020) Predictmeans: calculate predicted means for linear models. Version: 1.0.4, https://CRAN.R-project.org/package=predictmeans

  48. Martin P (1986) An experimental study of weaning in the domestic cat. Behaviour 99:221–249. https://doi.org/10.1163/156853986X00568

    Article  Google Scholar 

  49. Martínez-Byer S, Urrutia A, Szenczi P, Hudson R, Bánszegi O (2020) Evidence for individual differences in behaviour and for behavioural syndromes in adult shelter cats. Animals 10:962. https://doi.org/10.3390/ani10060962

    Article  PubMed Central  Google Scholar 

  50. Martínez-Gómez M, Juárez M, Distel H, Hudson R (2004) Overlapping litters and reproductive performance in the domestic rabbit. Physiol Behav 82:629. https://doi.org/10.1016/j.physbeh.2004.05.011

    CAS  Article  PubMed  Google Scholar 

  51. Mech LD (1999) Alpha status, dominance, and division of labor in wolf packs. Can J Zool 77:1196–1203. https://doi.org/10.1139/z99-099

    Article  Google Scholar 

  52. Mech LD, Boitani L (2006) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago, USA

    Google Scholar 

  53. Mendl M (1988) The effects of litter size variation on mother-offspring relationships and behavioural and physical development in several mammalian species (principally rodents). J Zool 215:15–34. https://doi.org/10.1111/j.1469-7998.1988.tb04882.x

    Article  Google Scholar 

  54. Milligan BN, Fraser D, Kramer DL (2002) Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. Livest Prod Sci 76:181–191. https://doi.org/10.1016/S0301-6226(02)00012-X

    Article  Google Scholar 

  55. Mock DW, Parker GA (1997) The evolution of sibling rivalry. Oxford University Press, Oxford, UK

    Google Scholar 

  56. Nicolás L, Martínez-Gómez M, Hudson R, Bautista A (2011) Littermate presence enhances motor development, weight gain and competitive ability in newborn and juvenile domestic rabbits. Dev Psychobiol 53:37–46. https://doi.org/10.1002/dev.20485

    Article  PubMed  Google Scholar 

  57. Péter A (2015) Solomon Coder: a simple solution for behavior coding. Version: beta 17.03.22. http://www.solomoncoder.com/

  58. R Core Team (2019) R: A language and environment for statistical computing. Version: 3.6.1. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  59. Réale D, Dingemanse NJ, Kazem AJN, Wright J (2010) Evolutionary and ecological approaches to the study of personality. Phil Trans R Soc B 365:3937–3946. https://doi.org/10.1098/rstb.2010.0222

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reyes-Meza V, Hudson R, Martínez-Gómez M, Nicolás L, Rödel HG, Bautista A (2011) Possible contribution of position in the litter huddle to long-term differences in behavioral style in the domestic rabbit. Physiol Behav 104:778–785. https://doi.org/10.1016/j.physbeh.2011.07.019

    CAS  Article  PubMed  Google Scholar 

  61. Roche DG, Careau V, Binning SA (2016) Demystifying animal ‘personality’(or not): why individual variation matters to experimental biologists. J Exp Biol 219:3832–3843. https://doi.org/10.1242/jeb.146712

    Article  PubMed  Google Scholar 

  62. Rödel HG, Bautista A, García-Torres E, Martínez-Gómez M, Hudson R (2008a) Why do heavy littermates grow better than lighter ones? A study in wild and domestic European rabbits. Physiol Behav 95:441–448. https://doi.org/10.1016/j.physbeh.2008.07.011

    CAS  Article  PubMed  Google Scholar 

  63. Rödel HG, Hudson R, Rammler L, Sänger N, Schwarz L, Machnik P (2012) Lactation does not alter the long-term stability of individual differences in behavior of laboratory mice on the elevated plus maze. J Ethol 30:263–270. https://doi.org/10.1007/s10164-011-0320-y

    Article  Google Scholar 

  64. Rödel HG, Hudson R, von Holst D (2008b) Optimal litter size for individual growth of European rabbit pups depends on their thermal environment. Oecologia 155:677–689. https://doi.org/10.1007/s00442-008-0958-5

    Article  PubMed  Google Scholar 

  65. Rödel HG, Monclús R (2011) Long-term consequences of early development on personality traits: a study in European rabbits. Behav Ecol 22:1123–1130. https://doi.org/10.1093/beheco/arr100

    Article  Google Scholar 

  66. Rödel HG, Oppelt C, Starkloff A, Prager N, Long E, Rüdiger A-T, Seltmann MW, Monclús R, Hudson R, Poteaux C (2020) Within-litter covariance of allele-specific MHC heterozygosity, coccidian endoparasite load and growth is modulated by sibling differences in starting mass. Oecologia 194:345–357. https://doi.org/10.1007/s00442-020-04764-z

    Article  PubMed  Google Scholar 

  67. Rödel HG, von Holst D (2009) Features of the early juvenile development predict competitive performance in male European rabbits. Physiol Behav 97:495–502. https://doi.org/10.1016/j.physbeh.2009.04.005

    CAS  Article  PubMed  Google Scholar 

  68. Rödel HG, Zapka M, Talke S, Kornatz T, Bruchner B, Hedler C (2015) Survival costs of fast exploration during juvenile life in a small mammal. Behav Ecol Sociobiol 69:205–217. https://doi.org/10.1007/s00265-014-1833-5

    Article  Google Scholar 

  69. Ryan V, Wehmer F (1975) Effect of postnatal litter size on adult aggression in the laboratory mouse. Dev Psychobiol 8:363–370. https://doi.org/10.1002/dev.420080410

    CAS  Article  PubMed  Google Scholar 

  70. Sachser N, Hennessy MB, Kaiser S (2011) Adaptive modulation of behavioural profiles by social stress during early phases of life and adolescence. Neurosci Biobehav Rev 35:1518–1533. https://doi.org/10.1016/j.neubiorev.2010.09.002

    Article  PubMed  Google Scholar 

  71. Schmidt PM, Lopez RR, Collier BA (2007) Survival, fecundity, and movements of free-roaming cats. J Wildlife Manage 71:915–919. https://doi.org/10.2193/2006-066

    Article  Google Scholar 

  72. Spotte S (2014) Free-ranging cats: behavior, ecology, management, 1st edn. John Wiley & Sons, Chichester, UK

    Google Scholar 

  73. Stockley P, Parker GA (2002) Life history consequences of mammal sibling rivalry. P Natl Acad Sci USA 99:12932–12937. https://doi.org/10.1073/pnas.192125999

    CAS  Article  Google Scholar 

  74. Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644. https://doi.org/10.1111/2041-210x.12797

    Article  Google Scholar 

  75. Strand O, Landa A, Linnell JDC, Zimmermann B, Skogland T (2000) Social organization and parental behavior in the arctic fox. J Mammal 81:223–233. https://doi.org/10.1644/1545-1542(2000)081%3c0223:SOAPBI%3e2.0.CO;2

    Article  Google Scholar 

  76. Sulloway FJ (2010) Why siblings are like Darwin’s finches: birth order, sibling competition, and adaptive divergence within the family. In: Buss DM, Hawley PH (eds) The evolution of personality and individual differences. Oxford University Press, New York, USA, pp 86–119

  77. Szenczi P, Bánszegi O, Dúcs A, Gedeon CI, Markó G, Németh I, Altbäcker V (2011) Morphology and function of communal mounds of overwintering mound-building mice (Mus spicilegus). J Mammal 92:852–860. https://doi.org/10.1644/10-MAMM-A-258.1

    Article  Google Scholar 

  78. Trillmich F, Günther A, Müller C, Reinhold K, Sachser N (eds) (2015) New perspectives in behavioural development: adaptive shaping of behaviour over a lifetime? Front Zool 12:S1https://doi.org/10.1186/1742-9994-12-S1-S1

  79. Trillmich F, Hudson R (eds) (2011) Special issue: The emergence of personality in animals: the need for a developmental approach. Dev Psychobiol 53:505-655. https://doi.org/10.1002/dev.20573

  80. Urrutia A, Martínez-Byer S, Szenczi P, Hudson R, Bánszegi O (2019) Stable individual differences in vocalisation and motor activity during acute stress in the domestic cat. Behav Process 165:58–65. https://doi.org/10.1016/j.beproc.2019.05.022

    Article  Google Scholar 

  81. Vullioud C, Davidian E, Wachter B, Rousset F, Courtiol A, Höner OP (2019) Social support drives female dominance in the spotted hyaena. Nat Ecol Evol 3:71–76. https://doi.org/10.1038/s41559-018-0718-9

    Article  PubMed  Google Scholar 

  82. Wachter B, Höner OP, East ML, Golla W, Hofer H (2002) Low aggression levels and unbiased sex ratios in a prey-rich environment: no evidence of siblicide in Ngorongoro spotted hyenas (Crocuta crocuta). Behav Ecol Sociobiol 52:348–356. https://doi.org/10.1007/s00265-002-0522-y

    Article  Google Scholar 

  83. Zepeda JA, Rödel HG, Monclús R, Hudson R, Bautista A (2019) Sibling differences in litter huddle position contribute to overall variation in weaning mass in a small mammal. Behav Ecol Sociobiol 73:165. https://doi.org/10.1007/s00265-019-2777-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Liliana Ivonne García Mondragón and Yasemin Gultekin for help with video analysis, Carolina Rojas for administrative organization, Royal Canin® for generous support of our research, and our two anonymous reviewers who helped a lot improving the manuscript.

Funding

Financial support was provided by research grants from the Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México (UNAM) [DGAPA-; IN212416; IN23120] and by an ongoing program of collaboration between France and Mexico, ECOS-NORD-AUNIES, Nos. 2999016 and M19A01 for Mexico and France, respectively. The research was supported by the Instituto de Investigaciones Biomédicas, UNAM, by a postdoctoral fellowship to OB, and by the Consejo Nacional de Ciencia y Tecnologia (CONACyT) by a postdoctoral fellowship to PS (Cátedra 691) and a doctoral fellowship to DG (No. 292461).

Author information

Affiliations

Authors

Contributions

Conceptualization: P.S., R.H., H.G.R., and O.B.; methodology: P.S., O.B., R.H., and S.M.-B.; data collection and video analysis: O.B., P.S., D.G., and S.M.-B.; statistical analysis: P.S. and H.G.R.; visualization: P.S., D.G.; writing—original draft preparation: O.B., P.S., D.G., S.M.-B.; writing—review and editing: O.B., R.H., H.G.R.; supervision: O.B. and P.S.; project administration: D.G. and S.M.-B.; funding acquisition: R.H.

Corresponding authors

Correspondence to Robyn Hudson or Oxána Bánszegi.

Ethics declarations

Ethics approval

Throughout the study, animals were kept and treated according to the ASAB/ABS (2016) guidelines for the care and use of animals in research, with the guidelines for the treatment of animals in behavioral research of the Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and according to the National Guide for the Production, Care and Use of Laboratory Animals, Mexico (Norma Oficial Mexicana NOM-062–200-1999). The present study did not require ethical approval from the institute’s ethics committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. I Schulte-Hostedde.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szenczi, P., González, D., Martínez-Byer, S. et al. Motivation matters: lighter littermates of the domestic cat compete more successfully for meat at weaning. Behav Ecol Sociobiol 75, 139 (2021). https://doi.org/10.1007/s00265-021-03079-0

Download citation

Keywords

  • Sibling competition
  • Weaning
  • Motivation
  • Aggression
  • Personality
  • Felis silvestris catus