Information content of ultraviolet-reflecting colour patches and visual perception of body coloration in the Tyrrhenian wall lizard Podarcis tiliguerta

Abstract

Colour signals are ubiquitous in nature but only recently have researchers recognised the potential of ultraviolet (UV)-reflecting colour patches to function as signals of quality. Lacertid lizards often display UV-blue patches on their flanks and black spots over their entire body, both of which are under sexual selection. They also have a cryptic dorsum and some species have a conspicuous, polymorphic ventral coloration. In this study, we use the Tyrrhenian wall lizard Podarcis tiliguerta to investigate the information content of the lateral UV-blue patches and black melanin spots of males by assessing the relationship between colour features and individual quality traits. In addition, we use a visual modelling procedure to examine whether the coloration of the different body parts and different colour morphs can be distinguished by a wall lizard visual system. We found that larger males had more numerous and larger UV-blue patches, with a higher UV chroma, UV-shifted hue, but a lower spectral intensity than smaller males. The extent of black on the throat, dorsum, and flanks also correlated with male body size and size-corrected head length but not with colour features of the UV-blue patches. These results suggest that the UV-blue and melanic colour patches may provide different, non-redundant information about male resource holding potential, and thus act as condition-dependent indicators of male quality. Finally, we found that the different body parts can be chromatically distinguished from each other, and that the UV-blue patches are the most conspicuous while the dorsum is the least conspicuous.

Significance statement

Many animals use their coloration to convey information about their quality as rivals or mates. Yet, until recently researchers have not recognised the potential of ultraviolet colour patches to function as signals of quality. In this study, we first show that male Tyrrhenian wall lizards display ultraviolet-blue and black colour patches that correlate positively with some aspect of their quality such as body or head size. Furthermore, our visual modelling procedure suggests that these lizards are able to distinguish the colours of their body parts from each other, with dorsal colours being the least conspicuous and ultraviolet-blue coloration being the most conspicuous.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data used in this study are available https://doi.org/10.5281/zenodo.4423275.

References

  1. Abalos J, Pérez i de Lanuza G, Carazo P, Font E (2016) The role of male coloration in the outcome of staged contests in the European common wall lizard (Podarcis muralis). Behaviour 153:607–631. https://doi.org/10.1163/1568539X-00003366

  2. Abalos J, Pérez i de Lanuza, Bartolomé A, et al (2020) No evidence for differential sociosexual behavior and space use in the color morphs of the European common wall lizard (Podarcis muralis). Ecol Evol 10:10986-11005. https://doi.org/10.1002/ece3.6659

  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1080/13645700903062353

    Article  Google Scholar 

  4. Anderson S, Prager M (2006) Quantifying colors. In: Hill GE, Mcgraw KJ (eds) Bird coloration, vol 1. mechanisms and measurements. Cambridge: Harvard University Press, pp 41–89

    Google Scholar 

  5. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  6. Andersson M (1994) Sexual selection. Princeton: Princeton University Press

    Book  Google Scholar 

  7. Andrade P, Pinho C, Pérez i de Lanuza G, Afonso S, Brejcha J, Rubin C-J, Wallerman O, Pereira P, Sabatino SJ, Bellati A, Pellitteri-Rosa D, Bosakova Z, Bunikis I, Carretero MA, Feiner N, Marsik P, Paupério F, Salvi D, Soler L, While GM, Uller T, Font E, Andersson L, Carneiro M (2019) Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proceedings of the National Academy of Sciences 116:5633–5642

    CAS  Article  Google Scholar 

  8. Arbizu M (2019) pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4. https://github.com/pmartinezarbizu/pairwiseAdonis

  9. Badiane A, Pérez i de Lanuza G, Garcia-Custodio M, Carazo P, Font E (2017) Colour patch size and measurement error using reflectance spectrophotometry. Methods Ecol Evol 8:1585–1592. https://doi.org/10.1111/ijlh.12426

  10. Badiane A, Carazo P, Price-rees SJ, Ferrando-Bernal M, Whiting MJ (2018a) Why blue tongue ? A potential UV-based deimatic display in a lizard. Behav Ecol Sociobiol 72:104

  11. Badiane A, Carazo P, Font E (2018b) Colouration in male blue-throated keeled lizards (Algyroides nigropunctatus): evidence for ultraviolet reflectance of throat and lateral patches. Herpetol J 28:39–42

  12. Badiane A, Martin M, Meylan S, Richard M, Decencière Ferrandière B, Le Galliard JF (2020) Male ultraviolet reflectance and female mating history influence female mate choice and male mating success in a polyandrous lizard. Biol J Linn Soc 130:586–598. https://doi.org/10.1093/biolinnean/blaa061

    Article  Google Scholar 

  13. Baird TA (2013) Lizards and other reptiles as model systems for the study of contest behaviour. In: Hardy IC, Briffa M (eds) Animal contests. Cambridge: Cambridge University Press, pp 258–286

    Chapter  Google Scholar 

  14. Bajer K, Molnár O, Török J, Herczeg G (2010) Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behav Ecol Sociobiol 64:2007–2014. https://doi.org/10.1007/s00265-010-1012-2

    Article  Google Scholar 

  15. Bajer K, Molnár O, Török J, Herczeg G (2011) Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol Lett 7:866–868

    Article  Google Scholar 

  16. Bombi P, Salvi D, Luiselli L, Bologna MA (2009) Modelling correlates of microhabitat use of two sympatric lizards: a model selection approach. Anim Biol 59:109–126. https://doi.org/10.1163/157075609X417134

    Article  Google Scholar 

  17. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sunderland: Sinauer Association Press

    Google Scholar 

  18. Brizzi R, Lanza B (1975) The natural history of the macinaggio islets with particular reference to the herpetofauna. Natura 66:53–72

    Google Scholar 

  19. Bruinjé AC, Coelho FEA, Paiva TMA, Costa GC (2019) Aggression, color signaling, and performance of the male color morphs of a Brazilian lizard (Tropidurus semitaeniatus). Behav Ecol Sociobiol 73:72. https://doi.org/10.1007/s00265-019-2673-0

    Article  Google Scholar 

  20. Bruschi S, Corti C, Carretero MA, Harris DJ, Lanza B, Leviton A (2006) Comments on the status of the Sardinian-Corsican Lacertid lizard Podarcis tiliguerta. Proc Calif Acad Sci 57:225–245

    Google Scholar 

  21. Capula M (1996) Evolutionary genetics of the insular lacertid lizard Podarcis tiliguerta: genetic structure and population heterogeneity in a geographically fragmented species. Heredity 77:518–529. https://doi.org/10.1038/hdy.1996.179

    Article  Google Scholar 

  22. Carpenter GC (1995) Modeling dominance : the Influence of size, coloration, and experience on dominance relations in tree lizards (Urosaurus ornatus). Herpetol Monogr 9:88–101

    Article  Google Scholar 

  23. Cooper WE, Mendonca MT, Vitt LJ (1987) Induction of orange head coloration and activation of courtship and aggression by testosterone in the male broad-headed skink (Eumeces laticeps). J Herpetol 21:96. https://doi.org/10.2307/1564469

    Article  Google Scholar 

  24. Cox RM, Zilberman V, John-Alder HB (2008) Testosterone stimulates the expression of a social color signal in Yarrow’s spiny lizard, Sceloporus jarrovii. J Exp Zool A 309:505–514. https://doi.org/10.1002/jez.481

    CAS  Article  Google Scholar 

  25. Cox RM, Stenquist DS, Calsbeek R (2009) Testosterone, growth and the evolution of sexual size dimorphism. J Evol Biol 22:1586–1598. https://doi.org/10.1111/j.1420-9101.2009.01772.x

    CAS  Article  PubMed  Google Scholar 

  26. Cronin TW, Bok MJ (2016) Photoreception and vision in the ultraviolet. J Exp Biol 219:2790–2801

    Article  Google Scholar 

  27. Deodhar S, Isvaran K (2018) Why do males use multiple signals? Insights from measuring wild male behavior over lifespans. Front Ecol Evol 6:75. https://doi.org/10.3389/fevo.2018.00075

    Article  Google Scholar 

  28. Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fishes 9:173–190. https://doi.org/10.1007/BF00690861

    Article  Google Scholar 

  29. Fleishman LJ, Perez CW, Yeo AI, Cummings KJ, Dick S, Almonte E (2016) Perceptual distance between colored stimuli in the lizard Anolis sagrei: comparing visual system models to empirical results. Behav Ecol Sociobiol 70:541–555. https://doi.org/10.1007/s00265-016-2072-8

    Article  Google Scholar 

  30. Font E, Molina-Borja M (2004) Ultraviolet reflectance of color patches in Gallotia galloti lizards from Tenerife, Canary islands. In: Pérez-Mellado V, Riera N, Perera A (eds) The biology of lacertid lizards: evolutionary and ecological perspectives. Menorca: Institut Menorquí d’Estudis, pp 201–221

    Google Scholar 

  31. Font E, Pérez i de Lanuza G, Sampedro C (2009) Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata: Lacertidae). Biol J Linn Soc 97:766–780. https://doi.org/10.1111/j.1095-8312.2009.01251.x

  32. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    CAS  Article  Google Scholar 

  33. Hill GE, McGraw KJ (2006) Bird coloration: function and evolution, vol 2. Cambridge: Harvard University Press

    Google Scholar 

  34. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  35. Husak JF, Irschick DJ, Meyers JJ, Lailvaux P, Moore IT (2007) Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Horm Behav 52:360–367. https://doi.org/10.1016/j.yhbeh.2007.05.014

    CAS  Article  PubMed  Google Scholar 

  36. Huyghe K, Vanhooydonck B, Scheers H, Molina-Borja M, Van Damme R (2005) Morphology, performance and fighting capacity in male lizards, Gallotia galloti. Funct Ecol 19:800–807. https://doi.org/10.1111/j.1365-2435.2005.01038.x

    Article  Google Scholar 

  37. Huyghe K, Herrel A, Adriaens D, Tadic Z, Van Damme R (2009) It is all in the head: morphological basis for differences in bite force among colour morphs of the Dalmatian wall lizard. Biol J Linn Soc 96:13–22. https://doi.org/10.1111/j.1095-8312.2008.01103.x

    Article  Google Scholar 

  38. Huyghe K, Husak JF, Moore IT, Vanhooydonck B, Van Damme R, Molina-Borja M, Herrel A (2010a) Effects of testosterone on morphology, performance and muscle mass in a lizard. J Exp Zool A 313:9–16. https://doi.org/10.1002/jez.569

    CAS  Article  Google Scholar 

  39. Huyghe K, Small M, Vanhooydonck B, Herrel A, Tadic Z, Van Damme R, Backeljau T (2010b) Genetic divergence among sympatric colour morphs of the Dalmatian wall lizard (Podarcis melisellensis). Genetica 138:387–393. https://doi.org/10.1007/s10709-010-9435-2

    CAS  Article  PubMed  Google Scholar 

  40. Johnstone RA (1996) Multiple displays in animal communication: ‘backup signals’ and “multiple messages.” Phil Trans R Soc B 351:329–338. https://doi.org/10.1098/rstb.1996.0026

    Article  Google Scholar 

  41. Karsten KB, Andriamandimbiarisoa LN, Fox SF, Raxworthy CJ (2009) Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behav Ecol 20:1079–1088. https://doi.org/10.1093/beheco/arp100

    Article  Google Scholar 

  42. Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision–behavioural tests and physiological concepts. Biol Rev 78:81–118. https://doi.org/10.1017/S1464793102005985

    Article  PubMed  Google Scholar 

  43. Kemp DJ, Grether GF (2015) Integrating functional and evolutionary approaches to the study of color-based animal signals. In: Irschik DJ, Briffa M, Podos J (eds) Animal signaling and function: an integrative approach. Hoboken: Wiley-Blackwell, pp 111–140

    Google Scholar 

  44. Kemp DJ, Herberstein ME, Grether GF (2012) Unraveling the true complexity of costly color signaling. Behav Ecol 23:233–236. https://doi.org/10.1093/beheco/arr153

    Article  Google Scholar 

  45. Keyser AJ, Hill GE (1999) Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament. Proc R Soc Lond B 266:771–777. https://doi.org/10.1098/rspb.1999.0704

    Article  Google Scholar 

  46. Lailvaux SP, Herrel A, VanHooydonck B, Meyers JJ, Irschick DJ (2004) Performance capacity, fighting tactics and the evolution of life-stage male morphs in the green anole lizard (Anolis carolinensis). Proc R Soc Lond B 271:2501–2508. https://doi.org/10.1098/rspb.2004.2891

    Article  Google Scholar 

  47. Lappin AK, Husak JF (2005) Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am Nat 166:426–436

    Article  Google Scholar 

  48. Lappin AK, Jones MEH (2014) Reliable quantification of bite-force performance requires use of appropriate biting substrate and standardization of bite out-lever. J Exp Biol 217:4303–4312. https://doi.org/10.1242/jeb.106385

    Article  PubMed  Google Scholar 

  49. Losos JB, Creer DA, Schulte JA (2002) Cautionary comments on the measurement of maximum locomotor capabilities. J Zool 258:57–61. https://doi.org/10.1017/S0952836902001206

    Article  Google Scholar 

  50. Macedonia J (2001) Habitat light, colour variation, and ultraviolet reflectance in the Grand Cayman anole, Anolis conspersus. Biol J Linn Soc 73:299–320. https://doi.org/10.1006/bijl.2001.0545

    Article  Google Scholar 

  51. MacGregor HEA, While GM, Barrett J, Pérez i de Lanuza G, Carazo P, Michaelides S, Uller T (2017) Experimental contact zones reveal causes and targets of sexual selection in hybridizing lizards. Funct Ecol 31:742–752. https://doi.org/10.1111/1365-2435.12767

  52. Maia R, White T (2018) Comparing colours using visual models. Behav Ecol 29:649–659. https://doi.org/10.1093/beheco/ary017

    Article  Google Scholar 

  53. Maia R, Gruson H, Endler JA, White TE (2019) pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol Evol 10:1097–1107. https://doi.org/10.1111/2041-210X.13174

    Article  Google Scholar 

  54. Marshall KLA, Stevens M (2014) Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behav Ecol 25:1325–1337. https://doi.org/10.1093/beheco/aru126

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marshall KLA, Philpot KE, Damas-Moreira I, Stevens M (2015a) Intraspecific colour variation among lizards in distinct island environments enhances local camouflage. PLoS ONE 10:e0135241. https://doi.org/10.1371/journal.pone.0135241

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Marshall KLA, Philpot KE, Stevens M (2015b) Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, Podarcis erhardii. Ecol Evol 5:4115–4131. https://doi.org/10.1002/ece3.1650

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marshall KLA, Philpot KE, Stevens M (2016) Microhabitat choice in island lizards enhances camouflage against avian predators. Sci Rep 6:19815. https://doi.org/10.1038/srep19815

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Martin M, Meylan S, Gomez D, Le Galliard JF (2013) Ultraviolet and carotenoid-based coloration in the viviparous lizard Zootoca vivipara (Squamata: Lacertidae) in relation to age, sex, and morphology. Biol J Linn Soc 110:128–141. https://doi.org/10.1111/bij.12104

    Article  Google Scholar 

  59. Martin M, Le Galliard JF, Meylan S, Loew ER (2015a) The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J Exp Biol 218:458–465. https://doi.org/10.1242/jeb.115923

    Article  PubMed  Google Scholar 

  60. Martin M, Meylan S, Perret S, Le Galliard JF (2015b) UV coloration influences spatial dominance but not agonistic behaviors in male wall lizards. Behav Ecol Sociobiol 69:1483–1491. https://doi.org/10.1007/s00265-015-1960-7

    Article  Google Scholar 

  61. Martin M, Meylan S, Haussy C, Decencière B, Perret S, Le Galliard JF (2016) UV color determines the issue of conflicts but does not covary with individual quality in a lizard. Behav Ecol 27:262–270. https://doi.org/10.1093/beheco/arv149

    Article  Google Scholar 

  62. Merkling T, Chandrasoma D, Rankin K, Whiting MJ (2018) Seeing red: pteridine-based colour and male quality in a dragon lizard. Biol J Linn Soc 124:677–689. https://doi.org/10.1093/biolinnean/bly074

    Article  Google Scholar 

  63. Molina-Borja M, Font E, Mesa Avila G (2006) Sex and population variation in ultraviolet reflectance of colour patches in Gallotia galloti (Fam. Lacertidae) from Tenerife (Canary Islands). J Zool 268:193–206. https://doi.org/10.1111/j.1469-7998.2005.00008.x

    Article  Google Scholar 

  64. Molnár O, Bajer K, Torok J, Herczeg G (2012) Individual quality and nuptial throat colour in male European green lizards. J Zool 287:233–239. https://doi.org/10.1111/j.1469-7998.2012.00916.x

    Article  Google Scholar 

  65. Morehouse NI, Rutowski RL (2010) In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color. Am Nat 176:768–784. https://doi.org/10.1086/657043

    Article  PubMed  Google Scholar 

  66. Names G, Martin M, Badiane A, Le Galliard J-F (2019) The relative importance of body size and UV coloration in influencing male-male competition in a lacertid lizard. Behav Ecol Sociobiol 73:98

    Article  Google Scholar 

  67. Oksanen J, Blanchet FG, Friendly M, et al (2017) Vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

  68. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514. https://doi.org/10.1016/S0169-5347(98)01484-0

    CAS  Article  PubMed  Google Scholar 

  69. Painting CJ, Rajamohan G, Chen Z, Zeng H, Daiqin L (2016) It takes two peaks to tango: the importance of UVB and UVA in sexual signalling in jumping spiders. Anim Behav 113:137–146. https://doi.org/10.1016/j.anbehav.2015.12.030

    Article  Google Scholar 

  70. Papke RS, Kemp DJ, Rutowski RL (2007) Multimodal signalling: structural ultraviolet reflectance predicts male mating success better than pheromones in the butterfly Colias eurytheme L. (Pieridae). Anim Behav 73:47–54. https://doi.org/10.1016/j.anbehav.2006.07.004

    Article  Google Scholar 

  71. Pérez i de Lanuza G, Font E (2007) Ultraviolet reflectance of male nuptial colouration in sand lizards (Lacerta agilis) from the Pyrenees. Amphibia-Reptilia 28:438–443. https://doi.org/10.1163/156853807781374764

  72. Pérez i de Lanuza G, Font E (2015) Differences in conspicuousness between alternative color morphs in a polychromatic lizard. Behav Ecol 26:1432–1446. https://doi.org/10.1093/beheco/arv075

  73. Pérez i de Lanuza G, Font E, Carazo P (2013a) Color-assortative mating in a color-polymorphic lacertid lizard. Behav Ecol 24:273–279. https://doi.org/10.1093/beheco/ars164

  74. Pérez i de Lanuza G, Font E, Monterde JL (2013b) Using visual modelling to study the evolution of lizard coloration: sexual selection drives the evolution of sexual dichromatism in lacertids. J Evol Biol 26:1826–1835. https://doi.org/10.1111/jeb.12185

  75. Pérez i de Lanuza G, Carazo P, Font E (2014) Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Anim Behav 90:73–81. https://doi.org/10.1016/j.anbehav.2014.01.017

  76. Pérez i de Lanuza G, Abalos J, Bartolomé A, Font E (2018) Through the eye of a lizard: hue discrimination in a lizard with ventral polymorphic coloration. J Exp Biol 221:jeb.169565. https://doi.org/10.1242/jeb.169565

  77. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019) nlme: linear and nonlinear mixed effects models. R package version 3.1–145. https://CRAN.R-project.org/package=nlme

  78. Plasman M, Reynoso VH, Nicolás L, Torres R (2015) Multiple colour traits signal performance and immune response in the Dickerson’s collared lizard Crotaphytus dickersonae. Behav Ecol Sociobiol 69:765–775. https://doi.org/10.1007/s00265-015-1892-2

    Article  Google Scholar 

  79. Quinn VS, Hews DK (2003) Positive relationship between abdominal coloration and dermal melanin density in Phrynosomatid lizards. Copeia 2003:858–864. https://doi.org/10.1643/h202-116.1

    Article  Google Scholar 

  80. R Development Core Team (2017) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org

  81. Rhen T, Crews D (2000) Organization and activation of sexual and agonistic behavior in the leopard gecko, Eublepharis macularius. Neuroendocrinology 71:252–261. https://doi.org/10.1159/000054543

    CAS  Article  PubMed  Google Scholar 

  82. Rick IP, Modarressie R, Bakker TCM (2006) UV wavelengths affect female mate choice in three-spined sticklebacks. Anim Behav 71:307–313. https://doi.org/10.1016/j.anbehav.2005.03.039

    Article  Google Scholar 

  83. Rodríguez V, Buades JM, Brown RP et al (2017) Evolutionary history of Podarcis tiliguerta on Corsica and Sardinia. BMC Evol Biol 17:27. https://doi.org/10.1186/s12862-016-0860-4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Roulin A (2016) Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev 91:328–348. https://doi.org/10.1111/brv.12171

    Article  PubMed  Google Scholar 

  85. Salvi D, Pinho C, Harris DJ (2017) Digging up the roots of an insular hotspot of genetic diversity: decoupled mito-nuclear histories in the evolution of the Corsican-Sardinian endemic lizard Podarcis tiliguerta. BMC Evol Biol 17:63. https://doi.org/10.1186/s12862-017-0899-x

    Article  PubMed  PubMed Central  Google Scholar 

  86. San-Jose LM, Roulin A (2018) Toward understanding the repeated occurrence of associations between melanin-based coloration and multiple phenotypes. Am Nat 192:111–130. https://doi.org/10.1086/698010

    Article  PubMed  Google Scholar 

  87. San-Jose LM, Huyghe K, Schuerch J, Fitze PS (2017) More melanized males bite stronger but run slower: potential performance trade-offs related to melanin-based coloration. Biol J Linn Soc 122:184–196

    Article  Google Scholar 

  88. Santiago C, Green NF, Hamilton N, Endler JA, Osorio DC, Marshall NJ, Cheney KL (2020) Does conspicuousness scale linearly with colour distance? A test using reef fish. Proc R Soc B 287:20201456. https://doi.org/10.1098/rspb.2020.1456

    Article  PubMed  Google Scholar 

  89. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  90. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Article  Google Scholar 

  91. Secondi J, Lepetz V, Théry M (2012) Male attractiveness is influenced by UV wavelengths in a newt species but not in its close relative. PLoS ONE 7:e30391. https://doi.org/10.1371/journal.pone.0030391

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Senczuk G, Castiglia R, Colangelo P, Delaugerre M, Corti C (2019) The role of island physiography in maintaining genetic diversity in the endemic Tyrrhenian wall lizard (Podarcis tiliguerta). J Zool 309:140–151. https://doi.org/10.1111/jzo.12705

    Article  Google Scholar 

  93. Shawkey MD, D’Alba L (2017) Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Phil Trans R Soc B 372:20160536. https://doi.org/10.1098/rstb.2016.0536

    Article  PubMed  PubMed Central  Google Scholar 

  94. Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485. https://doi.org/10.1242/jeb.01047

    Article  PubMed  Google Scholar 

  95. Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282. https://doi.org/10.1016/j.anbehav.2003.11.010

    Article  Google Scholar 

  96. Stoehr AM, Mcgraw KJ (2001) Ultraviolet reflectance of color patches in male Sceloporus undulatus and Anolis carolinensis. J Herpetol 35:168–171

    Article  Google Scholar 

  97. Stuart-Fox DM, Moussalli A, Marshall NJ, Owens IPF (2003) Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Anim Behav 66:541–550. https://doi.org/10.1006/anbe.2003.2235

    Article  Google Scholar 

  98. Svensson PA, Wong BBM (2011) Carotenoid-based signals in behavioural ecology: a review. Behaviour 148:131–189. https://doi.org/10.1163/000579510X548673

    Article  Google Scholar 

  99. Van Damme R, Bauwens D, Castilla AM, Verheyen RF (1989) Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecologia 80:516–524. https://doi.org/10.1007/BF00380076

    Article  PubMed  Google Scholar 

  100. Vanhooydonck B, Van Damme R, Aerts P (2000) Ecomorphological correlates of habitat partitioning in Corsican lacertid lizards. Funct Ecol 14:358–368. https://doi.org/10.1046/j.1365-2435.2000.00430.x

    Article  Google Scholar 

  101. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358. https://doi.org/10.1098/rspb.1998.0302

    CAS  Article  Google Scholar 

  102. Wade J (2011) Relationships among hormones, brain and motivated behaviors in lizards. Horm Behav 59:637–644. https://doi.org/10.1016/j.yhbeh.2010.08.014

    CAS  Article  PubMed  Google Scholar 

  103. Weaver RJ, Koch RE, Hill GE (2017) What maintains signal honesty in animal colour displays used in mate choice? Phil Trans R Soc B 372:20160343. https://doi.org/10.1098/rstb.2016.0343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. White TE (2020) Structural colours reflect individual quality: a meta-analysis. Biol Lett 16:20200001

    Article  Google Scholar 

  105. Whiting MJ, Stuart-Fox DM, O’Connor D, Firth D, Bennet NC, Blomberg SP (2006) Ultraviolet signals ultra-aggression in a lizard. Anim Behav 72:353–363. https://doi.org/10.1016/j.anbehav.2005.10.018

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pau Carazo for his help in the design of this study. We are grateful to the two anonymous reviewers who help improved the quality of this study.

Funding

This work was funded by an International Macquarie Research Excellence Scholarship (iMQRES-2014166) to AB.

Author information

Affiliations

Authors

Contributions

AB and EF designed the study, conducted fieldwork, and collected the data. AB performed the statistical analyses and wrote the manuscript. EF revised the manuscript.

Corresponding author

Correspondence to Arnaud Badiane.

Ethics declarations

Ethics approval

This study was authorised by permit n°16–0660 issued on 12 April 2016 by DREAL Corse allowing the capture, transport, and detention of this protected species. The use of animals adheres to the guidelines set forth by the Animal Behaviour Society/Association for the Study of Animal Behaviour and was approved by the Macquarie University Animal Ethics Committee (reference 2015/044–2).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by E. Fernandez-Juricic

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badiane, A., Font, E. Information content of ultraviolet-reflecting colour patches and visual perception of body coloration in the Tyrrhenian wall lizard Podarcis tiliguerta. Behav Ecol Sociobiol 75, 96 (2021). https://doi.org/10.1007/s00265-021-03023-2

Download citation

Keywords

  • Colour signals
  • Visual modelling
  • Colour morph
  • Colour discrimination
  • Lacertidae