The effect of variation in moonlight on nocturnal song of a diurnal bird species

Abstract

The lunar cycle is known to affect the behaviour of strictly nocturnal species, but for diurnal species that are periodically active during the night, this has been less investigated. Nocturnal bird song is relatively common in diurnal species, yet research on this behaviour accounts for little of the research on avian vocalisations. This is surprising given that diurnal species are adapted for bright environments and therefore may be particularly sensitive to change in the lunar cycles. We used automated bioacoustic recorders and automatic song detection software to measure nocturnal song rate in a diurnal bird where both sexes sing, the willie wagtail (Rhipidura leucophrys). We deployed recorders at eight locations across four naturally dark sites resulting in 457 h of nocturnal audio. We confirmed anecdotal evidence suggesting that willie wagtails are prolific nocturnal singers during the breeding season and demonstrate that while both male and females sing during the day, nocturnal song is largely sung by males. Moreover, we show that nocturnal song increased with lunar illumination, contrasting with previous research on other diurnal species that sing at night. Our data allow us to hypothesise possible functions for nocturnal song in this species, such as territory defence or mate attraction.

Significance statement

Despite being taxonomically widespread, nocturnal birdsong is largely overlooked in the literature. Anecdotal evidence suggests nocturnal song is positively influenced by the intensity of moonlight but evidence corroborating this is minimal and conflicting. More problematic is that all previous studies are biased towards male song from Northern Hemisphere species. We addressed these gaps by measuring nocturnal song, over the entire lunar cycle, in the willie wagtail, an Australian species. We demonstrate that nocturnal songs are from chorusing males during the breeding season exclusively and that nocturnal song rate increases with lunar illumination. Our work provides a foundation for hypothesizing the function of nocturnal song and contributes to understanding these patterns on a global level.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amrhein V, Korner P, Naguib M (2002) Nocturnal and diurnal singing activity in the nightingale: correlations with mating status and breeding cycle. Anim Behav 64:939–944. https://doi.org/10.1006/anbe.2002.1974

    Article  Google Scholar 

  2. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildlife Manage 74:1175–1178. https://doi.org/10.2193/2009-367

    Article  Google Scholar 

  3. Barton K (2018) MuMIn: multi-model inference. R package, version 1.40.4, http://r-forge.r-project.org/projects/mumin/

  4. Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01. Accessed 26 Sep 2019

  5. Bender DJ, Bayne EM, Brigham RM (1996) Lunar condition influences coyote (Canis latrans) howling. Am Midl Nat 136:413–417. https://doi.org/10.2307/2426745

    Article  Google Scholar 

  6. Bradshaw WE, Holzapfel CM (2007) Evolution of animal photoperiodism. Annu Rev Ecol Evol S 38:1–25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115

    Article  Google Scholar 

  7. Brigham RM, Barclay RMR (1992) Lunar influence on foraging and nesting activity of common whippoorwills (Phalaenoptilus nuttallii). Auk 109:315–320. https://doi.org/10.2307/4088200

    Article  Google Scholar 

  8. Brigham RM, Gutsell RCA, Wiacek RS, Geiser F (1999) Foraging behaviour in relation to the lunar cycle by Australian Owlet-nightjars, Aegotheles cristatus. Emu 99:253–261. https://doi.org/10.1071/mu99031

    Article  Google Scholar 

  9. Bruni A, Mennill DJ, Foote JR (2014) Dawn chorus start time variation in a temperate bird community: relationships with seasonality, weather, and ambient light. J Ornithol 155:877–890. https://doi.org/10.1007/s10336-014-1071-7

    Article  Google Scholar 

  10. Burke T, Bruford M, Hanotte O, Brookfield J (1998) Multilocus and single-locus DNA fingerprinting. In: Hölzel AR (ed) Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp 287–336

    Google Scholar 

  11. Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  12. Burton J (1979) Continuous nocturnal singing by Cetti's Warbler. Brit Birds 72:184–185

    Google Scholar 

  13. Catchpole CK (1973) Functions of advertising song in sedge warbler (Acrocephalus schoenobaenus) and reed warbler (Acrocephalus scirpaceus). Behaviour 46:300–320. https://doi.org/10.1163/156853973x00067

    Article  Google Scholar 

  14. Catchpole CK, Mann N, Slater PJB (2008) Bird song: biological themes and variations, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  15. Celis-Murillo A, Benson TJ, Sosa-Lopez JR, Ward MP (2016a) Nocturnal songs in a diurnal passerine: attracting mates or repelling intruders? Anim Behav 118:105–114. https://doi.org/10.1016/j.anbehav.2016.04.023

    Article  Google Scholar 

  16. Celis-Murillo A, Stodola KW, Pappadopoli B, Burton JM, Ward MP (2016b) Seasonal and daily patterns of nocturnal singing in the Field Sparrow (Spizella pusilla). J Ornithol 157:853–860. https://doi.org/10.1007/s10336-015-1318-y

    Article  Google Scholar 

  17. Celis-Murillo A, Schelsky W, Benson TJ, Louder MIM, Ward MP (2017) Patterns, correlates, and paternity consequences of extraterritorial foray behavior in the field sparrow (Spizella pusilla): an automated telemetry approach. Behav Ecol Sociobiol 71:45. https://doi.org/10.1007/s00265-017-2273-9

    Article  Google Scholar 

  18. Chan K (2001) Partial migration in Australian landbirds: a review. Emu 101:281–292. https://doi.org/10.1071/mu00034

    Article  Google Scholar 

  19. Collins S (2004) Vocal fighting and flirting: the functions of birdsong. In: Marler P, Slabbekoorn H (eds) Nature’s music: the science of birdsong. Elsevier Academic, London, pp 39–79

    Google Scholar 

  20. Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav Ecol 25:1037–1047. https://doi.org/10.1093/beheco/aru103

    Article  Google Scholar 

  21. Da Silva A, Valcu M, Kempenaers B (2015) Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Phil Trans R Soc B 370:20140126. https://doi.org/10.1098/rstb.2014.0126

    PubMed  Article  Google Scholar 

  22. Dadwal N, Bhatt D (2017) Influence of astronomical (lunar)/meteorological factors on the onset of dawn song chorus in the Pied Bush Chat (Saxicola caprata). Curr Biol 113:329–334. https://doi.org/10.18520/cs/v113/i02/329-334

    Article  Google Scholar 

  23. Dadwal N, Bhatt D, Singh A (2017) Singing patterns of male pied bush chats (Saxicola caprata) across years and nesting cycles. Wilson J Ornithol 129:713–726

    Article  Google Scholar 

  24. Daly M, Behrends PR, Wilson MI, Jacobs LF (1992) Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim Behav 44:1–9. https://doi.org/10.1016/s0003-3472(05)80748-1

    Article  Google Scholar 

  25. Dixon A, Ross D, Omalley SLC, Burke T (1994) Paternal investment inversely related to degree of extra-pair paternity in the reed bunting. Nature 371:698–700. https://doi.org/10.1038/371698a0

    Article  Google Scholar 

  26. Dixon DR, Dixon LRJ, Bishop JD, Pettifor RA (2006) Lunar-related reproductive behaviour in the badger (Meles meles). Acta Ethol 9:59–63. https://doi.org/10.1007/s10211-006-0016-4

    Article  Google Scholar 

  27. Double M, Cockburn A (2000) Pre-dawn infidelity: females control extra-pair mating in superb fairy-wrens. Proc R Soc Lond B 267:465–470. https://doi.org/10.1098/rspb.2000.1023

    CAS  Article  Google Scholar 

  28. Dyrcz A (1994) Breeding biology and behavior of the willie wagtail Rhipidura leucophrys in the Madang Region, Papua New Guinea. Emu 94:17–26 https://doi.org/10.1071/MU9940017

    Article  Google Scholar 

  29. Evers DC, Paruk JD, Mc Intyre JW, Barr JF (2010) Common Loon (Gavia immer). In: Poole AF (ed) The Birds of North America, 2nd edn. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  30. Farina A, Ceraulo M (2017) The acoustic chorus and its ecological significance. Wiley, New York

    Google Scholar 

  31. Foote JR, Nanni LK, Schroeder R (2017) Seasonal patterns of nocturnal singing by ovenbirds and white-throated sparrows. Behaviour 154:1275–1295. https://doi.org/10.1163/1568539X-00003468

    Article  Google Scholar 

  32. Foote JR, Marini KLD, Al-Ani H (2018) Understanding the function of nocturnal song in ovenbirds: males do not countersing at night. J Avian Biol 49:jav-012511. https://doi.org/10.1111/jav.01729

    Article  Google Scholar 

  33. Foster RG, Roenneberg T (2008) Human responses to the geophysical daily, annual and lunar cycles. Curr Biol 18:R784–R794. https://doi.org/10.1016/j.cub.2008.07.003

    CAS  PubMed  Article  Google Scholar 

  34. Ganey JL (1990) Calling behavior of spotted owls in northern Arizona. Condor 92:485–490. https://doi.org/10.2307/1368245

    Article  Google Scholar 

  35. Gaston KJ, Visser ME, Holker F (2015) The biological impacts of artificial light at night: the research challenge. Phil Trans R Soc B 370:20140133. https://doi.org/10.1098/rstb.2014.0133

    PubMed  Article  Google Scholar 

  36. Gil D, Gahr M (2002) The honesty of bird song: multiple constraints for multiple traits. Trends Ecol Evol 17:133–141. https://doi.org/10.1016/s0169-5347(02)02410-2

    Article  Google Scholar 

  37. Goodey W, Lill A (1993) Parental care by the willie wagtail in southern Victoria. Emu 93:180–187

    Article  Google Scholar 

  38. Greenfield MD, Tourtellot MK, Snedden WA (1997) Precedence effects and the evolution of chorusing. Proc R Soc Lond B 264:1355–1361. https://doi.org/10.1098/rspb.1997.0188

    Article  Google Scholar 

  39. Grueber C, Nakagawa S, Laws R, Jamieson I (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    CAS  PubMed  Article  Google Scholar 

  40. Gursky S (2003) Lunar philia in a nocturnal primate. Int J Primatol 24:351–367. https://doi.org/10.1023/a:1023053301059

    Article  Google Scholar 

  41. Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Bi 17:215–253. https://doi.org/10.1146/annurev.cellbio.17.1.215

    CAS  Article  Google Scholar 

  42. Hasselquist D, Bensch S, von Schantz T (1996) Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature 381:229–232. https://doi.org/10.1038/381229a0

    CAS  Article  Google Scholar 

  43. Higgins P, Peter J, Cowling S (2006) Handbook of Australian, New Zealand and Antarctic Birds. Volume 7: Boatbill to Starlings. Oxford University Press, Melbourne

  44. Houston AI, McNamara JM (1987) Singing to attract a mate: a stochastic dynamic game. J Theor Biol 129:57–68. https://doi.org/10.1016/s0022-5193(87)80203-5

    Article  Google Scholar 

  45. Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche: Environmental factors. Prog Brain Res 199:281–304. https://doi.org/10.1016/b978-0-444-59427-3.00017-4

    PubMed  Article  Google Scholar 

  46. Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627–639. https://doi.org/10.1034/j.1600-0706.2003.12856.x

    Article  Google Scholar 

  47. Jin L, Munro K, Tan S, Hoffman J, Amos W (2006) Polymorphic microsatellite DNA markers for the grey fantail, Rhipidura albiscapa. Mol Ecol Notes 6:75–76. https://doi.org/10.1111/j.1471-8286.2005.01143.x

    CAS  Article  Google Scholar 

  48. Kahn NW, St John J, Quinn TW (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078. https://doi.org/10.2307/4089527

    Article  Google Scholar 

  49. Katz J, Hafner SD, Donovan T (2016a) Assessment of error rates in acoustic monitoring with the R package monitoR. Bioacoustics 25:177–196. https://doi.org/10.1080/09524622.2015.1133320

    Article  Google Scholar 

  50. Katz J, Hafner SD, Donovan T (2016b) Tools for automated acoustic monitoring within the R package monitoR. Bioacoustics 25:197–210. https://doi.org/10.1080/09524622.2016.1138415

    Article  Google Scholar 

  51. Kelsey MG (1989) A comparison of the song and territorial behavior of a long-distance migrant, the Marsh Warbler Acrocephalus palustris, in Summer and Winter. Ibis 131:403–414. https://doi.org/10.1111/j.1474-919X.1989.tb02788.x

    Article  Google Scholar 

  52. Kempenaers B, Borgstrom P, Loes P, Schlicht E, Valcu M (2010) Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr Biol 20:1735–1739. https://doi.org/10.1016/j.cub.2010.08.028

    CAS  PubMed  Article  Google Scholar 

  53. Kleindorfer S, Hoi H, Evans C, Mahr K, Robertson J, Hauber ME, Colombelli-Negrel D (2014) The cost of teaching embryos in superb fairy-wrens. Behav Ecol 25:1131–1135. https://doi.org/10.1093/beheco/aru097

    Article  Google Scholar 

  54. Krebs JR (1977) The significance of song repertoires: The Beau Geste hypothesis. Anim Behav 25:475–478. https://doi.org/10.1016/0003-3472(77)90022-7

    Article  Google Scholar 

  55. Krisciunas K, Schaefer BE (1991) A model of the brightness of moonlight. Publ Astron Soc Pac 103:1033–1039. https://doi.org/10.1086/132921

    Article  Google Scholar 

  56. Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED, Dayan T, Helfrich-Forster C (2013) Chronobiology by moonlight. Proc R Soc B 280:20123088. https://doi.org/10.1098/rspb.2012.3088

    PubMed  Article  Google Scholar 

  57. Kyba CCM, Tong KP, Bennie J, Birriel I, Birriel JJ, Cool A, Danielsen A, Davies TW, Outer PN, Edwards W, Ehlert R, Falchi F, Fischer J, Giacomelli A, Giubbilini F, Haaima M, Hesse C, Heygster G, Hölker F, Inger R, Jensen LJ, Kuechly HU, Kuehn J, Langill P, Lolkema DE, Nagy M, Nievas M, Ochi N, Popow E, Posch T, Puschnig J, Ruhtz T, Schmidt W, Schwarz R, Schwope A, Spoelstra H, Tekatch A, Trueblood M, Walker CE, Weber M, Welch DL, Zamorano J, Gaston KJ (2015) Worldwide variations in artificial skyglow. Sci Rep 5:8409. https://doi.org/10.1038/srep08409

    PubMed  PubMed Central  Article  Google Scholar 

  58. Kyba CCM, Mohar A, Posch T (2017) How bright is moonlight? Astron Geophys 58:31–32. https://doi.org/10.1093/astrogeo/atx025

    Article  Google Scholar 

  59. La VT (2012) Diurnal and nocturnal birds vocalize at night: a review. Condor 114:245–257. https://doi.org/10.1525/cond.2012.100193

    Article  Google Scholar 

  60. Lafayette L, Sauter G, Vu G, Meade B (2016) Spartan Performance and Flexibility: An HPC-Cloud Chimera. OpenStack Summit, Barcelona

    Google Scholar 

  61. Lane G (1933) The Western Meadowlark singing at night. Condor 35:237. https://doi.org/10.1093/condor/35.6.237a

    Article  Google Scholar 

  62. Lundberg A (1980) Vocalizations and courtship feeding of the ural owl, Strix uralensis. Ornis Scand 11:65–70. https://doi.org/10.2307/3676267

    Article  Google Scholar 

  63. Magoolagan L, Mawby PJ, Whitehead FA, Sharp SP (2019) The structure and context of male and female song in White-throated Dippers. J Ornithol 160:195–205. https://doi.org/10.1007/s10336-018-1599-z

    Article  Google Scholar 

  64. Martin DJ (1973) Selected aspects of burrowing owl ecology and behavior. Condor 75:446–456. https://doi.org/10.2307/1366565

    Article  Google Scholar 

  65. Matysiokova B, Remes V (2013) Faithful females receive more help: the extent of male parental care during incubation in relation to extra-pair paternity in songbirds. J Evol Biol 26:155–162. https://doi.org/10.1111/jeb.12039

    CAS  PubMed  Article  Google Scholar 

  66. McNamara JM, Mace RH, Houston AI (1987) Optimal daily routines of singing and foraging in a bird singing to attract a mate. Behav Ecol Sociobiol 20:399–405. https://doi.org/10.1007/bf00302982

    Article  Google Scholar 

  67. Merrow M, Spoelstra K, Roenneberg T (2005) The circadian cycle: daily rhythms from behaviour to genes - First in the Cycles Review Series. EMBO Rep 6:930–935. https://doi.org/10.1038/sj.embor.7400541

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Miller MW (2006) Apparent effects of light pollution on singing behavior of American robins. Condor 108:130–139. https://doi.org/10.1650/0010-5422(2006)108[0130:aeolpo]2.0.co;2

    Article  Google Scholar 

  69. Milsom TP, Rochard JBA, Poole SJ (1990) Activity patterns of lapwings Vanellus vanellus in relation to the lunar cycle. Ornis Scand 21:147–156. https://doi.org/10.2307/3676811

    Article  Google Scholar 

  70. Møller AP (1991) Why mated songbirds sing so much: mate guarding and male announcement of mate fertility status. Am Nat 138:994–1014. https://doi.org/10.1086/285264

    Article  Google Scholar 

  71. Møller AP, Diaz M, Grim T et al (2015) Effects of urbanization on bird phenology: a continental study of paired urban and rural populations. Clim Res 66:185–199. https://doi.org/10.3354/cr01344

    Article  Google Scholar 

  72. Mougeot F, Bretagnolle V (2000) Predation risk and moonlight avoidance in nocturnal seabirds. J Avian Biol 31:376–386. https://doi.org/10.1034/j.1600-048X.2000.310314.x

    Article  Google Scholar 

  73. Naguib M, Altenkamp R, Griessmann B (2001) Nightingales in space: song and extra-territorial forays of radio tagged song birds. J Ornithol 142:306–312. https://doi.org/10.1007/bf01651369

    Article  Google Scholar 

  74. Nowicki S, Searcy WA, Hughes M (1998) The territory defense function of song in song sparrows: A test with the speaker occupation design. Behaviour 135:615–628. https://doi.org/10.1163/156853998792897888

    Article  Google Scholar 

  75. Odom KJ, Hall ML, Riebel K, Omland KE, Langmore NE (2014) Female song is widespread and ancestral in songbirds. Nat Commun 5:3379. https://doi.org/10.1038/ncomms4379

    CAS  PubMed  Article  Google Scholar 

  76. Odom KJ, Omland KE, McCaffrey DR, Monroe MK, Christhilf JL, Roberts NS, Logue DM (2016) Typical males and unconventional females: songs and singing behaviors of a tropical, duetting Oriole in the breeding and non-breeding season. Front Ecol Evol 4:14. https://doi.org/10.3389/fevo.2016.00014

    Article  Google Scholar 

  77. Otter K, McGregor PK, Terry AMR, Burford FRL, Peake TM, Dabelsteen T (1999) Do female great tits (Parus major) assess males by eavesdropping? A field study using interactive song playback. Proc R Soc Lond B 266:1305–1309. https://doi.org/10.1098/rspb.1999.0779

    Article  Google Scholar 

  78. Penteriani V, Delgado MD, Campioni L, Lourenco R (2010) Moonlight makes owls more chatty. PLoS ONE 5:e8696. https://doi.org/10.1371/journal.pone.0008696

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Perez-Granados C, Lopez-Iborra GM (2020) Dupont’s Lark males start to sing earlier but reduce song rate on full moon dawns. J Ornithol 161:421–428. https://doi.org/10.1007/s10336-019-01731-1

    Article  Google Scholar 

  80. Price JJ, Yunes-Jimenez L, Osorio-Beristain M, Omland KE, Murphy TG (2008) Sex-role reversal in song? Females sing more frequently than males in the Streak-backed Oriole. Condor 110:387–392. https://doi.org/10.1525/cond.2008.8430

    Article  Google Scholar 

  81. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 26 Sep 2019

  82. Richards SA (2005) Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology 86:2805–2814. https://doi.org/10.1890/05-0074

    Article  Google Scholar 

  83. Robinson CM, Creanza N (2019) Species-level repertoire size predicts a correlation between individual song elaboration and reproductive success. Ecol Evol 9:8362–8377. https://doi.org/10.1002/ece3.5418

    PubMed  PubMed Central  Article  Google Scholar 

  84. Roth T, Sprau P, Schmidt R, Naguib M, Amrhein V (2009) Sex-specific timing of mate searching and territory prospecting in the nightingale: nocturnal life of females. Proc R Soc Lond B 276:2045–2050. https://doi.org/10.1098/rspb.2008.1726

    Article  Google Scholar 

  85. Schmidt KA, Belinsky KL (2013) Voices in the dark: predation risk by owls influences dusk singing in a diurnal passerine. Behav Ecol Sociobiol 67:1837–1843. https://doi.org/10.1007/s00265-013-1593-7

    Article  Google Scholar 

  86. Searcy WA, Andersson M (1986) Sexual selection and the evolution of song. Annu Rev Ecol Evol S 17:507–533. https://doi.org/10.1146/annurev.es.17.110186.002451

    Article  Google Scholar 

  87. Sibly RM, Nott HMR, Fletcher DJ (1990) Splitting behavior into bouts. Anim Behav 39:63–69. https://doi.org/10.1016/s0003-3472(05)80726-2

    Article  Google Scholar 

  88. Skutelsky O (1996) Predation risk and state-dependent foraging in scorpions: Effects of moonlight on foraging in the scorpion Buthus occitanus. Anim Behav 52:49–57. https://doi.org/10.1006/anbe.1996.0151

    Article  Google Scholar 

  89. Smit B, Boyles JG, Brigham RM, McKechnie AE (2011) Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J Biol Rhythm 26:241–248. https://doi.org/10.1177/0748730411402632

    Article  Google Scholar 

  90. Spoelstra K, Visser ME (2014) The impact of artificial light on avian ecology. Oxford University Press, London

    Google Scholar 

  91. Staicer C, Spector D, Horn A (1996) The dawn chorus and other diel patterns in acoustic signaling. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Comstock Publishing Associates, Ithaca, pp 426–453

    Google Scholar 

  92. Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav Ecol Sociobiol 65:13–21. https://doi.org/10.1007/s00265-010-1037-6

    Article  Google Scholar 

  93. Tabachnick BG, Fidell LS (2018) Using multivariate statistics, 7th edn. Pearson, Boston

    Google Scholar 

  94. Thomas RJ, Drewitt EJA, Kelly DJ, Marples NM, Semple S (2003) Nocturnal playbacks reveal hidden differences in singing behaviour between populations of Robin, Erithacus rubecula. Bird Study 50:84–87. https://doi.org/10.1080/00063650309461295

    Article  Google Scholar 

  95. Thompson NS, LeDoux K, Moody K (1994) A system for describing bird song units. Bioacoustics 5:267–279

    Article  Google Scholar 

  96. Tuttle EM (2003) Alternative reproductive strategies in the white-throated sparrow: behavioral and genetic evidence. Behav Ecol 14:425–432. https://doi.org/10.1093/beheco/14.3.425

    Article  Google Scholar 

  97. Tyler GA, Green RE (1996) The incidence of nocturnal song by male Corncrakes Crex crex is reduced during pairing. Bird Study 43:214–219. https://doi.org/10.1080/00063659609461013

    Article  Google Scholar 

  98. Vanorsdol KG (1984) Foraging behavior and hunting success of lions in Queen Elizabeth Nation Park, Uganda. Afr J Ecol 22:79–99. https://doi.org/10.1111/j.1365-2028.1984.tb00682.x

    Article  Google Scholar 

  99. Vasquez RA (1994) Assessment of predation risk via illumination level: facultative central place foraging in the cricetid rodent Phyllotis darwini. Behav Ecol Sociobiol 34:375–381. https://doi.org/10.1007/bf01209784

    Article  Google Scholar 

  100. Ward MP, Alessi M, Benson TJ, Chiavacci SJ (2014) The active nightlife of diurnal birds: extraterritorial forays and nocturnal activity patterns. Anim Behav 88:175–184. https://doi.org/10.1016/j.anbehav.2013.11.024

    Article  Google Scholar 

  101. Woods CP, Brigham RM (2008) Common poorwill activity and calling behavior in relation to moonlight and predation. Wilson J Ornithol 120:505–512. https://doi.org/10.1676/06-067.1

    Article  Google Scholar 

  102. York JE, Young AJ, Radford AN (2014) Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase. Biol Lett 10:20130970. https://doi.org/10.1098/rsbl.2013.0970

    PubMed  PubMed Central  Article  Google Scholar 

  103. Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438. https://doi.org/10.1086/420412

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Barengi Gadjin, Bunurong and Wadawurrung peoples, the traditional custodians of the lands on which this work was conducted and pay our respects to Elders past and present. We thank Parks Victoria and property holders K. Hateley, D. Ellifson and H. Scott for allowing us to record on their property. Mist netting and censusing help were provided by the Mulder lab and field assistants. Thank you to L. Lafayette for help in accessing and using the high-performance computer facility and Spartan at Melbourne University. Thanks to M. Lockett, T. Keaney, and the Statistical Consulting Centre at Melbourne University for statistical help. We thank H. Brumm, V. Amrhein and one anonymous reviewer for comments which improved our manuscript.

Availability of data and material

Data available from Melbourne.figshare, DOI: https://doi.org/10.26188/12743930

Code availability

The R code used for statistical analyses for this study is available from the corresponding author on request.

Funding

The research was supported by funding from the ESA Holsworth Endowment and the Australasian Society for the Study of Animal Behaviour (ASSAB).

Author information

Affiliations

Authors

Contributions

Conception and design of the experiment, ALD, MLH, TMJ; collection of the data, ALD, MLH; analysis and interpretation of the data, ALD, MLH, TMJ; drafting or revising the article for intellectual content, ALD, MLH, TMJ. All authors approved the final version.

Corresponding author

Correspondence to Ashton L. Dickerson.

Ethics declarations

Conflicts of interest/Competing interest

The authors declare that they have no conflict of interest.

Ethics approval

This research adhered to the Animal Behaviour Society Guidelines for the use of animals and methods were approved by the University of Melbourne Animal Ethics Committee 1613983.4. Scientific permit number 10008095 approved by Department of Environment, Land, Water and Planning. Banding approved by the Australian Bird and Bat Banding Scheme, authority numbers 2073, 3031 and 3210.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Brumm

Electronic supplementary material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dickerson, A.L., Hall, M.L. & Jones, T.M. The effect of variation in moonlight on nocturnal song of a diurnal bird species. Behav Ecol Sociobiol 74, 109 (2020). https://doi.org/10.1007/s00265-020-02888-z

Download citation

Keywords

  • Nocturnal song
  • Lunar cycle
  • Bird song
  • Willie wagtail
  • Lunar illumination
  • Behaviour