Fight intensity correlates with stronger and more mechanically efficient weapons in three species of Aegla crabs

Abstract

In many species, individuals contest resources using specialized morphologies to overpower rivals, hereafter referred to as weapons. Despite their importance in fights, little is known about the selective forces affecting weapon evolution. This may be particularly important to understand why weapons are highly variable among species. Due to their role during fighting, we expect that whenever fighting becomes more important for individual fitness so should the intensity of selection on weapon strength and morphology (which affect the efficiency of a weapon during combat). If true, we expect species that fight more intensely to have stronger and more mechanically efficient weapons. We tested this idea using males of three species of Aegla crabs (A. longirostri, A. abtao, and A. denticulata) that vary in their fight intensity. We compared the muscle size, the mechanical advantage (a proxy for the efficiency of the movable finger of the claw), and the correlation between weapon biomechanics and overall weapon shape (a proxy for the efficiency of the entire claw) among the species. We found that species with more intense fights presented stronger claws, higher mechanical advantage, and less variation in the regression between biomechanics and overall shape. Interestingly, the species with the largest claws were not the most mechanically efficient, suggesting that weapon size is not the sole factor behind weapon evolution. We conclude that fight intensity might be an important factor affecting weapon biomechanics, which ultimately might lead to a better understanding of weapon evolution.

Significance statement

Animals fight using specialized morphologies to overpower rivals—termed weapons. Given the importance of fighting on leaving descendants to the next generation, weapon features related to winning fights are probably under selection. If true, then species in which fighting is more important should have stronger and more mechanically efficient weapons. Our results suggest that this might be true: Aegla crabs that fight more intensely have stronger and more efficient weapons (their claws). Interestingly, we also show that size is not the sole predictor of a better claw—muscle mass and mechanical efficiency might be higher in smaller claws when compared to larger claws. Thus, weapon evolution might not be solely tied to weapon size, but also to weapon morphology and mechanical efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

All code and data can be found on GitHub (https://github.com/alexandrepalaoro/ForgingWeapons).

References

  1. Adams DC, Otárola-Castillo E (2013) geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399. https://doi.org/10.1111/2041-210X.12035

    Article  Google Scholar 

  2. Arnott G, Elwood RW (2008) Information gathering and decision making about resource value in animal contests. Anim Behav 76:529–542. https://doi.org/10.1016/j.anbehav.2008.04.019

    Article  Google Scholar 

  3. Ayres-Peres L, Araujo PB, Santos S (2011) Description of the agonistic behavior of Aegla longirostri (Decapoda: Aeglidae). J Crustac Biol 31:379–388. https://doi.org/10.1651/10-3422.1

    Article  Google Scholar 

  4. Ayres-Peres L, Araujo PB, Jara CG et al (2015) How variable is agonistic behavior among crab species? A case study on freshwater anomurans (Crustacea: Decapoda: Aeglidae). J Zool 297:115–122. https://doi.org/10.1111/jzo.12262

    Article  Google Scholar 

  5. Baumart JS, Dalosto MM, Gonçalves AS, Palaoro AV, Santos S (2015) How to deal with a bad neighbor? Strategies of sympatric freshwater decapods (Crustacea) for coexistence. Hydrobiologia 762:29–39. https://doi.org/10.1007/s10750-015-2331-0

    Article  Google Scholar 

  6. Bean D, Cook JM (2001) Male mating tactics and lethal combat in the nonpollinating fig wasp Sycoscapter australis. Anim Behav 62:535–542. https://doi.org/10.1006/anbe.2001.1779

    Article  Google Scholar 

  7. Bonduriansky R (2007) Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–849. https://doi.org/10.1111/j.1558-5646.2007.00081.x

    Article  PubMed  Google Scholar 

  8. Briffa M, Fortescue KJ (2017) Motor pattern during fights in the hermit crab Pagurus bernhardus: evidence for the role of skill in animal contests. Anim Behav 128:13–20. https://doi.org/10.1016/j.anbehav.2017.03.031

    Article  Google Scholar 

  9. Bro-Jørgensen J (2007) The intensity of sexual selection predicts weapon size in male bovids. Evolution 61:1316–1326. https://doi.org/10.1111/j.1558-5646.2007.00111.x

    Article  PubMed  Google Scholar 

  10. Bueno SLS, Shimizu RM, Moraes JCB (2016) A remarkable anomuran: the taxon Aegla Leach, 1820. Taxonomic remarks, distribution, biology, diversity and conservation. In: Kawai T, Cumberlidge N (eds) A global overview of the conservation of freshwater decapod crustaceans. Springer International Publishing, Cham, pp 23–64

  11. Bywater CL, Wilson RS (2012) Is honesty the best policy? Testing signal reliability in fiddler crabs when receiver-dependent costs are high. Funct Ecol 26:804–811. https://doi.org/10.1111/j.1365-2435.2012.02002.x

    Article  Google Scholar 

  12. Claverie T, Smith PI (2007) Functional significance of an unusual chela dimorphism in a marine decapod: specialization as a weapon? Proc R Soc B Biol Sci 274:3033–3038. https://doi.org/10.1098/rspb.2007.1223

    Article  Google Scholar 

  13. Crane J (2015) Fiddler crabs of the world: Ocypodidae: genus UCA. Princeton University Press

  14. Dalosto MM, Palaoro AV (2019) Intra- and interspecific behavioral interactions of Aeglidae with a comparison to other decapods. In: Santos S, Bueno S (eds) . Aeglidae, Life History and Conservation Status of Unique Freshwater Anomuran Decapods, pp 181–202

    Google Scholar 

  15. Dalosto MM, Ayres-Peres L, Araujo PB, Santos S, Palaoro AV (2019) Pay attention to the ladies: female aggressive behavior and weapon allometry provide clues for sexual selection in freshwater anomurans (Decapoda: Aeglidae). Behav Ecol Sociobiol 73:127–111. https://doi.org/10.1007/s00265-019-2741-5

    Article  Google Scholar 

  16. Dennenmoser S, Christy JH (2013) The design of a beautiful weapon: compensation for opposing sexual selection on a trait with two functions. Evolution 67:1181–1188. https://doi.org/10.1111/evo.12018

    Article  PubMed  Google Scholar 

  17. Eberhard WG, Rodríguez RL, Huber BA et al (2018) Sexual selection and static allometry: the importance of function. Q Rev Biol 93:207–250. https://doi.org/10.1086/699410

    Article  Google Scholar 

  18. Emlen DJ (2008) The evolution of animal weapons. Annu Rev Ecol Evol Syst 39:387–413. https://doi.org/10.1146/annurev.ecolsys.39.110707.173502

    Article  Google Scholar 

  19. Fujiwara S, Kawai H (2016) Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela. J Morphol 277:1259–1272. https://doi.org/10.1002/jmor.20573

    Article  PubMed  Google Scholar 

  20. Husak JF, Lappin AK, Van Den Bussche RA (2009) The fitness advantage of a high-performance weapon. Biol J Linn Soc 96:840–845. https://doi.org/10.1111/j.1095-8312.2008.01176.x

    Article  Google Scholar 

  21. Huxley JS (1924) Constant differential growth-ratios and their significance. Nature 114:895. https://doi.org/10.1038/114895a0

    Article  Google Scholar 

  22. Kelly CD (2008) The interrelationships between resource-holding potential, resource-value and reproductive success in territorial males: how much variation can we explain? Behav Ecol Sociobiol 62:855–871. https://doi.org/10.1007/s00265-007-0518-8

    Article  Google Scholar 

  23. Klingenberg CP (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226:113–137. https://doi.org/10.1007/s00427-016-0539-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lailvaux SP, Irschick DJ (2006) A functional perspective on sexual selection: insights and future prospects. Anim Behav 72:263–273. https://doi.org/10.1016/j.anbehav.2006.02.003

    Article  Google Scholar 

  25. Lailvaux SP, Irschick DJ (2007) The evolution of performance-based male fighting ability in Caribbean Anolis lizards. Am Nat 170:573–586. https://doi.org/10.1086/521234

    Article  PubMed  Google Scholar 

  26. Lappin AK, Husak JF (2005) Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris.). Am Nat 166:426–436. https://doi.org/10.1086/432564

    Article  PubMed  Google Scholar 

  27. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  28. Levinton JS, Allen BJ (2005) The paradox of the weakening combatant: trade-off between closing force and gripping speed in a sexually selected combat structure. Funct Ecol 19:159–165. https://doi.org/10.1111/j.0269-8463.2005.00968.x

    Article  Google Scholar 

  29. Levinton JS, Judge ML, Kurdziel JP (1995) Functional differences between the major and minor claws of fiddler crabs (Uca, family Ocypodidae, order Decapoda, subphylum Crustacea): a result of selection or developmental constraint? J Exp Mar Biol Ecol 193:147–160. https://doi.org/10.1016/0022-0981(95)00115-8

    Article  Google Scholar 

  30. Masunari N, Hiro-oku M, Dan S, Nanri T, Kondo M, Goto M, Takada Y, Saigusa M (2015) Chela asymmetry in a durophagous crab: predominance of right-handedness and handedness reversal is linked to chela size and closing force. J Exp Biol 218:3658–3670. https://doi.org/10.1242/jeb.120196

    Article  PubMed  Google Scholar 

  31. McCullough EL, Miller CW, Emlen DJ (2016) Why sexually selected weapons are not ornaments. Trends Ecol Evol 31:742–751. https://doi.org/10.1016/j.tree.2016.07.004

    Article  PubMed  Google Scholar 

  32. O’Brien DM, Katsuki M, Emlen DJ (2017) Selection on an extreme weapon in the frog-legged leaf beetle (Sagra femorata). Evolution 71:2584–2598. https://doi.org/10.1111/evo.13336

    Article  PubMed  Google Scholar 

  33. O’Brien DM, Allen CE, Van Kleeck MJ et al (2018) On the evolution of extreme structures: static scaling and the function of sexually selected signals. Anim Behav 144:95–108. https://doi.org/10.1016/j.anbehav.2018.08.005

    Article  Google Scholar 

  34. O’Brien D, Boisseau R, Duell M et al (2019) Muscle mass drives cost in sexually selected arthropod weapons. Proc R Soc B Biol Sci 286:20191063. https://doi.org/10.1098/rspb.2019.1063

    CAS  Article  Google Scholar 

  35. Palaoro AV, Briffa M (2017) Weaponry and defenses in fighting animals: how allometry can alter predictions from contest theory. Behav Ecol 28:328–336. https://doi.org/10.1093/beheco/arw163

    Article  Google Scholar 

  36. Palaoro AV, Dalosto MM, Costa JR, Santos S (2014) Freshwater decapod (Aegla longirostri) uses a mixed assessment strategy to resolve contests. Anim Behav 95:71–79. https://doi.org/10.1016/j.anbehav.2014.06.014

    Article  Google Scholar 

  37. Peixoto PEC, Medina AM, Mendoza-Cuenca L (2014) Do territorial butterflies show a macroecological fighting pattern in response to environmental stability? Behav Process 109:14–20. https://doi.org/10.1016/j.beproc.2014.07.001

    Article  Google Scholar 

  38. Pekár S, Brabec M (2016) Marginal models via GLS: a convenient yet neglected tool for the analysis of correlated data in the behavioural sciences. Ethology 122:621–631. https://doi.org/10.1111/eth.12514

    Article  Google Scholar 

  39. Pélabon C, Firmat C, Bolstad GH, Voje KL, Houle D, Cassara J, Rouzic AL, Hansen TF (2014) Evolution of morphological allometry. Ann N Y Acad Sci 1320:58–75. https://doi.org/10.1111/nyas.12470

    Article  PubMed  Google Scholar 

  40. Pérez-Losada M, Bond-Buckup G, Jara CG, Crandall KA (2004) Molecular systematics and biogeography of the southern south American freshwater “crabs” Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches. Syst Biol 53:767–780. https://doi.org/10.1080/10635150490522331

    Article  PubMed  Google Scholar 

  41. Pinheiro J, Bates D, DebRoy S, et al (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1–137. HttpsCRANR-Proj

  42. Pinto NS, Palaoro AV, Peixoto PEC (2019) All by myself? Meta-analysis of animal contests shows stronger support for self than for mutual assessment models. Biol Rev 94:1430–1442. https://doi.org/10.1111/brv.12509

    Article  PubMed  Google Scholar 

  43. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. HttpswwwR-Proj

  44. Rebach S, Block JD (1998) Correlates of claw strength in the rock crab, Cancer irroratus (Decapoda, Brachyura). Crustaceana 71:468–473. https://doi.org/10.1163/156854098X00554

    Article  Google Scholar 

  45. Rico-Guevara A, Hurme KJ (2019) Intrasexually selected weapons. Biol Rev 94:60–101. https://doi.org/10.1111/brv.12436

    Article  Google Scholar 

  46. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223. https://doi.org/10.1007/s003579900054

    Article  Google Scholar 

  47. Rohlf FJ (2015) The tps series of software. Hystrix Ital J Mammal 26:9–12. https://doi.org/10.4404/hystrix-26.1-11264

    Article  Google Scholar 

  48. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59. https://doi.org/10.2307/2992207

    Article  Google Scholar 

  49. Rosario-Martinez H de (2015) phia: post-hoc interaction analysis. R package version 0.2–1. HttpsCRANR-Proj

  50. Rosenberg MS (2002) Fiddler crab claw shape variation: a geometric morphometric analysis across the genus Uca (Crustacea: Brachyura: Ocypodidae). Biol J Linn Soc 75:147–162. https://doi.org/10.1046/j.1095-8312.2002.00012.x

    Article  Google Scholar 

  51. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  52. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Solano-Brenes D, García-Hernández S, Machado G (2018) All the better to bite you with! Striking intrasexual differences in cheliceral size define two male morphs in an Amazonian arachnid. Biol J Linn Soc 125:521–534. https://doi.org/10.1093/biolinnean/bly120

    Article  Google Scholar 

  54. Somjee U, Woods H, Duell M, Miller C (2018) The hidden cost of sexually selected traits: the metabolic expense of maintaining a sexually selected weapon. Proc R Soc B Biol Sci 285:20181685. https://doi.org/10.1098/rspb.2018.1685

    CAS  Article  Google Scholar 

  55. Swanson BO, George MN, Anderson SP, Christy JH (2013) Evolutionary variation in the mechanics of fiddler crab claws. BMC Evol Biol 13:137. https://doi.org/10.1186/1471-2148-13-137

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taylor GM (2001) The evolution of armament strength: evidence for a constraint on the biting performance of claws of durophagous decapods. Evolution 55:550–560. https://doi.org/10.1111/j.0014-3820.2001.tb00788.x

    CAS  Article  PubMed  Google Scholar 

  57. Vieira MC, Peixoto PEC (2013) Winners and losers: a meta-analysis of functional determinants of fighting ability in arthropod contests. Funct Ecol 27:305–313. https://doi.org/10.1111/1365-2435.12051

    Article  Google Scholar 

  58. Voje KL (2016) Scaling of morphological characters across trait type, sex, and environment. Am Nat 187:89–98. https://doi.org/10.1086/684159

    Article  PubMed  Google Scholar 

  59. Walter GM, van Uitregt VO, Wilson RS (2011) Social control of unreliable signals of strength in male but not female crayfish, Cherax destructor. J Exp Biol 214:3294–3299. https://doi.org/10.1242/jeb.056754

    Article  PubMed  Google Scholar 

  60. Warner GF, Jones AR (1976) Leverage and muscle type in crab chelae (Crustacea: Brachyura). J Zool 180:57–68. https://doi.org/10.1111/j.1469-7998.1976.tb04663.x

    Article  Google Scholar 

  61. Wilson RS, Angilletta MJ (2014) Dishonest signaling during aggressive interactions: theory and empirical evidence. In: Irschick D, Briffa M, Podos J (eds) Animal signaling and function. John Wiley & Sons, Ltd, pp 205–227

  62. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press

  63. Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006

    Article  Google Scholar 

Download references

Acknowledgments

We also thank Danilo Muniz for the fruitful discussions on animal weapons.

Funding

AVP thanks FAPESP (process: 2016/22679-3) for the post-doctoral grant and The Crustacean Society Graduate Student Fellowship for the grant. SS and PECP thanks CNPq for the productivity grant (process: 311142/2014-1, 311212/2018-2, respectively).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandre V. Palaoro.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by T. Breithaupt

Electronic supplementary material

ESM 1

(DOCX 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palaoro, A.V., Peixoto, P.E.C., Benso-Lopes, F. et al. Fight intensity correlates with stronger and more mechanically efficient weapons in three species of Aegla crabs. Behav Ecol Sociobiol 74, 53 (2020). https://doi.org/10.1007/s00265-020-02834-z

Download citation

Keywords

  • Animal weapons
  • Animal contests
  • Allometry
  • Morphometric geometrics
  • Weapon evolution
  • Weapon biomechanics