Predictors of colony extinction vary by habitat type in social spiders

Abstract

Many animal societies are susceptible to mass mortality events and collapse. Elucidating how environmental pressures determine patterns of collapse is important for understanding how such societies function and evolve. Using the social spider Stegodyphus dumicola, we investigated the environmental drivers of colony extinction along two precipitation gradients across southern Africa, using the Namib and Kalahari deserts versus wetter savanna habitats to the north and east. We deployed experimental colonies (n = 242) along two ~ 800-km transects and returned to assess colony success in the field after 2 months. Specifically, we noted colony extinction events after the 2-month duration and collected environmental data on the correlates of those extinction events (e.g., evidence of ant attacks, no. of prey captured). We found that colony extinction events at desert sites were more frequently associated with attacks by predatory ants as compared with savanna sites, while colony extinctions in wetter savannas sites were more tightly associated with fungal outbreaks. Our findings support the hypothesis that environments vary in the selection pressures that they impose on social organisms, which may explain why different social phenotypes are often favored in each habitat.

Significance statement

Many social animals are susceptible to group extinction events. Identifying the factors that precipitate these events can help us to understand how societies function and evolve. We used a social spider model to evaluate whether the drivers of group extinction events may vary with habitat type. We found that ant attacks were more commonly associated with colony demise at arid sites, whereas fungal outbreaks were associated with collapse in wetter environments. If maintained temporally, these contrasting selection pressures could facilitate the evolution of local adaptation in individual- and colony-level phenotypes and aid in the maintenance of intraspecific trait diversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data will be made available at request to authors BLM or JNP.

References

  1. Agnarsson I, Avilés L, Coddington JA, Maddison WP (2006) Sociality in theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60:2342–2351. https://doi.org/10.1111/j.0014-3820.2006.tb01869.x

    Article  PubMed  Google Scholar 

  2. Aviles L (1986) Sex-ratio bias and possible group selection in the social spider Anelosimus eximius. Am Nat 128:1–12. https://doi.org/10.1086/284535

    Article  Google Scholar 

  3. Aviles L, Abbot P, Cutter AD (2002) Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives. Am Nat 159:115–127. https://doi.org/10.1086/324792

    Article  PubMed  Google Scholar 

  4. Avilés, L., & Guevara, J. (2017). Sociality in spiders. Rubenstein D, Abbot P (Cambridge Univ Press, Cambridge, UK), 188-223

  5. Avilés L, Tufino P (1998) Colony size and individual fitness in the social spider Anelosimus eximius. Am Nat 152:403–418. https://doi.org/10.1086/286178

    Article  PubMed  Google Scholar 

  6. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: linear mixed-effects models using Eigen and S4. R package version 1: 1–23

  7. Bengston SE, Dornhaus A (2014) Be meek or be bold? A colony-level behavioural syndrome in ants. Proc Royal Soc Lond B 281:20140518. https://doi.org/10.1098/rspb.2014.0518

    CAS  Article  Google Scholar 

  8. Bengston SE (2018) Life-history and behavioral trait covariation across 3 years in Temnothorax ants. Behav Ecol 29:1494–1501. https://doi.org/10.1093/beheco/ary101

    Article  Google Scholar 

  9. Caruso CM, Martin RA, Sletvold N, Morrissey MB, Wade MJ, Augustine KE, Carlson SM, MacColl A, Siepielski AM, Kingsolver JG (2017) What are the environmental determinants of phenotypic selection? A meta-analysis of experimental studies. Am Nat 190:363–376. https://doi.org/10.1086/692760

    Article  PubMed  Google Scholar 

  10. Cangialosi KR (1990) Social spider defense against kleptoparasitism. Behav Ecol Sociobiol 27:49–54. https://doi.org/10.1007/BF00183313

    Article  Google Scholar 

  11. Côté IM, Poulinb R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6:159–165. https://doi.org/10.1093/beheco/6.2.159

    Article  Google Scholar 

  12. Doering GN, Kamath A, Wright CM, Pruitt JN (2018) Evidence for contrasting size-frequency distributions of workers patrolling vegetation vs. the ground in the polymorphic African ant Anoplolepis custodiens. Insect Soc 65:663–668. https://doi.org/10.1007/s00040-018-0645-4

    Article  Google Scholar 

  13. Drummond H, Burghardt GM (1983) Geographic variation in the foraging behavior of the garter snake, Thamnophis elegans. Behavl Ecol Sociobiol 12:43–48. https://doi.org/10.1007/BF00296931

    Article  Google Scholar 

  14. Edney, E. B. (2012). Water balance in land arthropods (Vol. 9). Springer Science & Business Media. 284 pp.

  15. Grinsted L, Pruitt JN, Settepani V, Bilde T (2013) Individual personalities shape task differentiation in a social spider. Proc Royal Soc Lond B 280:20131407. https://doi.org/10.1098/rspb.2013.1407

    Article  Google Scholar 

  16. Gordon DM (1991) Behavioral flexibility and the foraging ecology of seed-eating ants. Am Nat 138:379–411. https://doi.org/10.1086/285223

    Article  Google Scholar 

  17. Gordon DM (2013) The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498:91–93. https://doi.org/10.1038/nature12137

    CAS  Article  PubMed  Google Scholar 

  18. Harwood G, Avilés L (2018) The shortfall of sociality: group-living affects hunting performance of individual social spiders. Behav Ecol 29:1487–1493. https://doi.org/10.1093/beheco/ary099

    Article  Google Scholar 

  19. Henschel JR, Schneider J, Meikle T (1996) Does group-living or aggregation of spiders of the genus Stegodyphus affect parasitism by pompilid wasps? Bull Br Arachnol Soc 10:138–140

    Google Scholar 

  20. Henschel JR (1998) Predation on social and solitary individuals of the spider Stegodyphus dumicola (Araneae, Eresidae). J Arachnol:61–69

  21. Hoffman CR, Avilés L (2017) Rain, predators, and spider sociality: a manipulative experiment. Behav Ecol 28:589–596. https://doi.org/10.1093/beheco/arx010

    Article  Google Scholar 

  22. Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A (2014) Behavioural syndromes and social insects: personality at multiple levels. Biol Rev 89:48–67. https://doi.org/10.1111/brv.12042

    Article  PubMed  Google Scholar 

  23. Janzen DH, Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49:96–110. https://doi.org/10.2307/1933565

    Article  Google Scholar 

  24. Jolles JW, Laskowski KL, Boogert NJ, Manica A (2018) Repeatable group differences in the collective behaviour of stickleback shoals across ecological contexts. Proc Royal Soc Lond B 285:20172629. https://doi.org/10.1098/rspb.2017.2629

    Article  Google Scholar 

  25. Kamath A, Primavera SD, Wright CM, Doering GN, Sheehy KA, Pinter-Wollman N, Pruitt JN (2018a) Collective behavior and colony persistence of social spiders depends on their physical environment. Behav Ecol 30:39–47. https://doi.org/10.1093/beheco/ary158

    Article  PubMed  Google Scholar 

  26. Kamath A, Pruitt JN, Brooks AJ, Ladd MC, Cook DT, Gallagher JP et al (2018b) Potential feedback between coral presence and farmerfish collective behavior promotes coral recovery. Oikos doi. https://doi.org/10.1111/oik.05854

  27. Kaspari M, Alonso L, O’Donnellkwd S (2000) Three energy variables predict ant abundance at a geographical scale. Proc Royal Soc Lond B 267:485–489. https://doi.org/10.1098/rspb.2000.1026

    CAS  Article  Google Scholar 

  28. Keiser CN, Hammer TJ, Pruitt JN (2019) Social spider webs harbour largely consistent bacterial communities across broad spatial scales. Biol Lett 15:20190436. https://doi.org/10.1098/rsbl.2019.0436

    Article  PubMed  Google Scholar 

  29. Keiser CN, Pinter-Wollman N, Ziemba MJ, Kothamasu KS, Pruitt JN (2018) The primary case is not enough: variation among individuals, groups and social networks modify bacterial transmission dynamics. J Animal Ecol 87:369–378. https://doi.org/10.1111/1365-2656.12729

    Article  Google Scholar 

  30. Keiser CN, Pruitt JN (2014) Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc Royal Soc Lond B 281:20141424. https://doi.org/10.1098/rspb.2014.1424

    Article  Google Scholar 

  31. Keiser CN, Wright CM, Pruitt JN (2015) Warring arthropod societies: social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size. Behav Process 119:14–21. https://doi.org/10.1016/j.beproc.2015.07.005

    Article  Google Scholar 

  32. Krause J, Ruxton GD (2002) Living in groups. Oxford University Press

  33. Laskowski KL, Montiglio PO, Pruitt JN (2016) Individual and group performance suffers from social niche disruption. Am Nat 187:776–785. https://doi.org/10.1086/686220

    Article  PubMed  Google Scholar 

  34. Lichtenstein JLL, Fisher DN, McEwen BL et al (2019) Collective aggressiveness limits colony persistence in high- but not low-elevation sites at Amazonian social spiders. J Evol Biol 00:1–6. https://doi.org/10.1111/jeb.13532

    Article  Google Scholar 

  35. Lieth H (1973) Primary production: terrestrial ecosystems. Hum Ecol 1:303–332. https://doi.org/10.1007/BF01536729

    Article  Google Scholar 

  36. Loveridge JP (1968) The control of water loss in Locusta Migratoria Migratorioides R. & F: I. Cuticular water loss. J Exp Biol 49:1–13

    Google Scholar 

  37. Lubin Y, Bilde T (2007) The evolution of sociality in spiders. Adv Stud Behav 37:83–145. https://doi.org/10.1016/S0065-3454(07)37003-4

    Article  Google Scholar 

  38. Majer M, Holm C, Lubin Y, Bilde T (2018) Cooperative foraging expands dietary niche but does not offset intra-group competition for resources in social spiders. Sci Rep 8:11828

    Article  Google Scholar 

  39. Modlmeier AP, Laskowski KL, DeMarco AE, Coleman A, Zhao K, Brittingham HA et al (2014) Persistent social interactions beget more pronounced personalities in a desert-dwelling social spider. Biol Lett 10:20140419. https://doi.org/10.1098/rsbl.2014.0419

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pinter-Wollman N, Gordon DM, Holmes S (2012) Nest site and weather affect the personality of harvester ant colonies. Behav Ecol 23:1022–1029. https://doi.org/10.1093/beheco/ars066

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pinter-Wollman N, Mi B, Pruitt JN (2017) Replacing bold individuals has a smaller impact on group performance than replacing shy individuals. Behav Ecol 28:883–889. https://doi.org/10.1093/beheco/arx054

    Article  Google Scholar 

  42. Pruitt JN (2012) Behavioural traits of colony founders affect the life history of their colonies. Ecol Lett 15:1026–1032. https://doi.org/10.1111/j.1461-0248.2012.01825.x

    Article  PubMed  Google Scholar 

  43. Pruitt JN, Goodnight CJ (2014) Site-specific group selection drives locally adapted group compositions. Nature 514:359–362. https://doi.org/10.1038/nature13811

    CAS  Article  PubMed  Google Scholar 

  44. Pruitt, J. N., Oufiero, C. E., Avilés, L., & Riechert, S. E. (2012). Iterative evolution of increased behavioral variation characterizes the transition to sociality in spiders and proves advantageous. Am Nat 180: 496-510 doi: /10.1086/667576

  45. Pruitt, JN, Wright,CM, Lichtenstein, JLL, Chism, GT, McEwen, BL, Kamath, A. (2018) Selection for collective aggressiveness favors social susceptibility in social spiders. Curr Biol 28: 100–105. doi: https://doi.org/10.1016/j.cub.2017.11.038

  46. Purcell J (2011) Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol Rev 86:475–491. https://doi.org/10.1111/j.1469-185X.2010.00156.x

    Article  PubMed  Google Scholar 

  47. Purcell J, Avilés L (2008) Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: insights from a transplant experiment. Proc Royal Soc Lond B 275:2617–2625. https://doi.org/10.1098/rspb.2008.0582

    Article  Google Scholar 

  48. Rayor LS (1996) Attack strategies of predatory wasps (Hymenoptera: Pompilidae; Sphecidae) on colonial orb web-building spiders (Araneidae: Metepeira incrassata). J Kans Entomol Soc:67–75

  49. Rayor LS, Uetz GW (1990) Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav Ecol Sociobiol 27:77–85. https://doi.org/10.1007/BF00168449

    Article  Google Scholar 

  50. Riechert SE (1985) Why do some spiders cooperate? Agelena consociata, a case study. Flor Entomol:105–116. https://doi.org/10.2307/3494333

  51. Riechert SE (1993) Investigation of potential gene flow limitation of behavioral adaptation in an aridlands spider. Behav Ecol Sociobiol 32:355–363. https://doi.org/10.1007/BF00183792

    Article  Google Scholar 

  52. Rypstra AL, Tirey RS (1991) Prey size, prey perishability and group foraging in a social spider. Oecologia 86(1):25–30. https://doi.org/10.1007/BF00317384

    Article  PubMed  Google Scholar 

  53. Scharf I, Modlmeier AP, Fries S, Tirard C, Foitzik S (2012) Characterizing the collective personality of ant societies: aggressive colonies do not abandon their home. PLoS One 7:e33314. https://doi.org/10.1371/journal.pone.0033314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T (2017) Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Mol Ecol 26:4197–4210. https://doi.org/10.1111/mec.14196

    CAS  Article  Google Scholar 

  55. Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276. https://doi.org/10.1111/j.1461-0248.2009.01381.x

    Article  PubMed  Google Scholar 

  56. Siepielski AM, Gotanda KM, Morrissey MB, Diamond SE, DiBattista JD, Carlson SM (2013) The spatial patterns of directional phenotypic selection. Ecol Lett 16:1382–1392. https://doi.org/10.1111/ele.12174

    Article  PubMed  Google Scholar 

  57. Siepielski AM, Morrissey MB, Buoro M, Carlson SM, Caruso CM, Clegg SM et al (2017) Precipitation drives global variation in natural selection. Science 355:959–962. https://doi.org/10.1126/science.aag2773

    CAS  Article  PubMed  Google Scholar 

  58. Traniello JF, Fujita MS, Bowen RV (1984) Ant foraging behavior: ambient temperature influences prey selection. Behav Ecol Sociobiol 15:65–68. https://doi.org/10.1007/BF00310217

    Article  Google Scholar 

  59. Whitehouse MEA, Jackson RR (1998) Predatory behaviour and parental care in Argyrodes flavipes, a social spider from Queensland. J Zool 244:95–105. https://doi.org/10.1111/j.1469-7998.1998.tb00011.x

    Article  Google Scholar 

  60. Whitehouse ME, Lubin Y (2005) The functions of societies and the evolution of group living: spider societies as a test case. Biol Rev 80:347–361. https://doi.org/10.1017/S1464793104006694

    Article  Google Scholar 

  61. Wray MK, Mattila HR, Seeley TD (2011) Collective personalities in honeybee colonies are linked to colony fitness. Anim Behav 81:559–568. https://doi.org/10.1016/j.anbehav.2010.11.027

    Article  Google Scholar 

  62. Wright CM, Keiser CN, Pruitt JN (2016) Colony personality composition alters colony-level plasticity and magnitude of defensive behaviour in a social spider. Anim Behav 115:175–183. https://doi.org/10.1016/j.anbehav.2016.03.002

    Article  Google Scholar 

  63. Wright CM, Lichtenstein JL, Montgomery GA, Luscuskie LP, Pinter-Wollman N, Pruitt JN (2017) Exposure to predators reduces collective foraging aggressiveness and eliminates its relationship with colony personality composition. Behav Ecol Sociobiol 71:126–111. https://doi.org/10.1007/s00265-017-2356-7

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wrona FJ, Dixon RJ (1991) Group size and predation risk: a field analysis of encounter and dilution effects. Am Nat 137:186–201. https://doi.org/10.1086/285153

    Article  Google Scholar 

  65. Yip EC, Powers KS, Avilés L (2008) Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc Royal Soc Lond B 105:11818–11822. https://doi.org/10.1073/pnas.0710603105

    Article  Google Scholar 

  66. Yip EC, Rayor LS (2011) Do social spiders cooperate in predator defense and foraging without a web? Behav Ecol Sociobiol 65:1935–1947. https://doi.org/10.1007/s00265-011-1203-5

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Ian Van Wert, for keeping science cool. We would also like to thank several anonymous reviewers for their input which considerably improved the manuscript.

Funding

Funding was provided by NSF IOS grants 1352705 and 1455895 to JNP and 1456010 to NPW and NIH grant GM115509 to NPW and JNP.

Author information

Affiliations

Authors

Contributions

JNP and NPW conceived the experiment. BLM, JLL, CMW, GTC, and JNP performed the experiment. BLM and DNF analyzed the data. BLM, DNF, and JNP wrote the manuscript; other authors provided editorial input.

Corresponding author

Correspondence to Brendan L. McEwen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. C. Choe

Electronic supplementary material

ESM 1

(DOCX 98 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McEwen, B.L., Lichtenstein, J.L.L., Fisher, D.N. et al. Predictors of colony extinction vary by habitat type in social spiders. Behav Ecol Sociobiol 74, 2 (2020). https://doi.org/10.1007/s00265-019-2781-x

Download citation

Keywords

  • Colony collapse
  • Disease
  • Extinction
  • Geographic variation
  • Local adaptation