Skip to main content

Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus)

Abstract

Several factors are thought to shape male parasite risk in polygynous and polygynandrous mammals, including male-male competition, investment in potentially immunosuppressive hormones, and dispersal. Parasitism is also driven by processes occurring at larger scales, including host social groups and populations. To date, studies that test parasite-related costs of male behavior at all three scales—individual hosts, social groups, and the host population—remain rare. To fill this gap, we investigated multi-scale predictors of helminth parasitism in 97 male savanna baboons (Papio cynocephalus) living in the Amboseli ecosystem in Kenya over a 5-year span. Controlling for multi-scale processes, we found that many of the classic indicators of male mating effort—high dominance rank, testosterone, and glucocorticoids—did not predict helminth infection risk. However, we identified two parasite-related costs associated with male behavior: (i) socially connected males exhibited higher Trichuris trichiura egg counts and greater parasite species richness than socially isolated males and (ii) males with stable group residency exhibited higher parasite species richness than males who frequently dispersed to new social groups. At the population level, males harbored more parasites following periods of drought than rainfall. Lastly, parasites exhibited positive covariance suggesting that infection risk increases if a host already harbors one or more parasite taxa. These results indicate that multi-scale processes are important in driving male parasite risk and that some aspects of male behavior are costly. Together, our results provide an unusually holistic perspective on the drivers of parasite risk in the context of male behaviors and life histories.

Significance statement

Infection by gastrointestinal helminths can have major consequences for host fitness, especially in the context of male mating effort. Multi-scale processes—from the host to its social group and population—are important for understanding key drivers of parasitism. We leveraged long-term data from one of the longest running behavioral ecology studies of a wild primate population in the world, the well-studied Amboseli baboon population in Kenya. We found that traditional indicators of male mating effort (attaining high dominance rank, high testosterone and glucocorticoids) did not predict parasitism. However, male social connectedness to females, competitive group demography, and harsh weather were all associated with higher parasitism. Because socially connected males faced the highest parasite risk, males may face a tradeoff between male-female relationships and parasitism. Our results show how processes at multiple scales contribute to variation in male parasite risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Akinyi MY, Jansen D, Habig B, Gesquiere LR, Alberts SC, Archie EA (2019) Costs and drivers of helminth parasite infection in wild female baboons. J Anim Ecol 88:1029–1043. https://doi.org/10.1111/1365-2656.12994

    Article  PubMed  Google Scholar 

  • Alberts SC, Altmann J (1995a) Balancing costs and opportunities: dispersal in male baboons. Am Nat 145:279–306. https://doi.org/10.1086/285740

    Article  Google Scholar 

  • Alberts SC, Altmann J (1995b) Preparation and activation - determinants of age at reproductive maturity in male baboons. Behav Ecol Sociobiol 36:397–406. https://doi.org/10.1007/bf00177335

    Article  Google Scholar 

  • Alberts SC, Altmann J (2001) Immigration and hybridization patterns of yellow and anubis baboons in and around Amboseli, Kenya. Am J Primatol 53:139–154. https://doi.org/10.1002/ajp.1

    CAS  Article  PubMed  Google Scholar 

  • Alberts SC, Altmann J (2012) The Amboseli Baboon Research Project: 40 years of continuity and change. In: Kappeler PM, Watts DPGF (eds) Long-term field studies of primates. Springer, Heidelberg, pp 261–287

    Google Scholar 

  • Alberts SC, Altmann J, Wilson ML (1996) Mate guarding constrains foraging activity of male baboons. Anim Behav 51:1269–1277. https://doi.org/10.1006/anbe.1996.0131

    Article  Google Scholar 

  • Alberts SC, Watts H, Altmann J (2003) Queuing and queue-jumping: long-term patterns of reproductive skew in male savannah baboons, Papio cynocephalus. Anim Behav 65:821–840. https://doi.org/10.1006/anbe.2003.2106

    Article  Google Scholar 

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302. https://doi.org/10.1126/science.1194694

    CAS  Article  PubMed  Google Scholar 

  • Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB, Poss M, Pulliam JRC (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol S 34:517–547. https://doi.org/10.1146/annurev.ecolsys.34.030102.151725

    Article  Google Scholar 

  • Andersson MB (1994) Sexual selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Archie EA, Altmann J, Alberts SC (2012) Social status predicts wound healing in wild baboons. P Natl Acad Sci USA 109:9017–9022. https://doi.org/10.1073/pnas.1206391109

    Article  Google Scholar 

  • Archie EA, Tung J, Clark M, Altmann J, Alberts SC (2014) Social affiliation matters: both same-sex and opposite-sex relationships predict survival in wild female baboons. Proc R Soc B 281:20141261. https://doi.org/10.1098/rspb.2014.1261

    Article  PubMed  Google Scholar 

  • Arlet ME, Chapman CA, Isbell LA, Molleman F, Mand R, Horak P, Carey JR (2015) Social and ecological correlates of parasitic infections in adult male gray-cheeked mangabeys (Lophocebus albigena). Int J Primatol 36:967–986. https://doi.org/10.1007/s10764-015-9866-9

    Article  Google Scholar 

  • Atherholt T, Lechevallier M, Norton W, Rosen J (1998) Effect of rainfall of Giardia and crypto. J Am Water Works Assoc 90:66–80

    CAS  Google Scholar 

  • Bartoń K (2009) MuMIn: R package for model selection and multi-model inference (version 0.12.2), https://cran.r-project.org/web/packages/MuMIn/index.html

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Behnke JM, Lewis JW, Zain SNM, Gilbert FS (1999) Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. J Helminthol 73:31–44

    CAS  PubMed  Google Scholar 

  • Bell G, Burt A (1991) The comparative biology of parasite species diversity: internal helminths of freshwater fish. J Anim Ecol 60:1047–1064

    Google Scholar 

  • Belsley DA (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York, NY

    Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312

    PubMed  Google Scholar 

  • Bowman DD (2014) Georgis’ parasitology for veterinarians, 10th edn. Elsevier, St. Louis, MO

    Google Scholar 

  • Bucknell DG, Gasser RB, Beveridge I (1995) The prevalence and epidemiology of gastrointestinal parasites of horses in Victoria, Australia. Int J Parasitol 25:711–724

    CAS  PubMed  Google Scholar 

  • Budischak SA, Neal D, Jolles AE, Ezenwa VO (2017) Differential host responses to parasitism shape divergent fitness costs of infection. Funct Ecol 32:324–333

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Google Scholar 

  • Byrne RL, Fogarty U, Mooney A, Marples NM, Holland CV (2018) A comparison of helminth infections as assessed through coprological analysis and adult worm burdens in a wild host. Int J Parasitol Parasites Wildl 7:439–444

    PubMed  PubMed Central  Google Scholar 

  • Cabaret J, Gasnier N, Jacquiet P (1998) Faecal egg counts are representative of digestive-tract strongyle worm burdens in sheep and goats. Parasite 5:137–142

    CAS  PubMed  Google Scholar 

  • Chapman CA, Speirs ML, Hodder SAM, Rothman JM (2010) Colobus monkey parasite infections in wet and dry habitats: implications for climate change. Afr J Ecol 48:555–558

    Google Scholar 

  • Clarke PMR, Henzi SP, Barrett L, Rendall D (2008) On the road again: competitive effects and condition-dependent dispersal in male baboons. Anim Behav 76:55–63

    Google Scholar 

  • Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885

    CAS  PubMed  Google Scholar 

  • Connor RC, Heithaus MR, Barre LM (2001) Complex social structure, alliance stability and mating access in a bottlenose dolphin super-alliance. Proc R Soc Lond B 268:263–267

    CAS  Google Scholar 

  • Coulson G, Cripps JK, Garnick S, Bristow V, Beveridge I (2018) Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Phil Trans Roy Soc B 373:20170197

    Google Scholar 

  • Creel S, Dantzer B, Goymann W, Rubenstein DR (2013) The ecology of stress: effects of the social environment. Funct Ecol 27:66–80

    Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. J. Murray, London

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • Drewe JA (2010) Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc R Soc Lond B 277:633–642

    Google Scholar 

  • Ezenwa VO (2004) Host social behavior and parasitic infection: a multifactorial approach. Behav Ecol 15:446–454

    Google Scholar 

  • Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, Jolles AE (2010) Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. Am Nat 176:613–624

    PubMed  Google Scholar 

  • Ezenwa VO, Jolles AE (2015) Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347:175–177

    CAS  PubMed  Google Scholar 

  • Fairbanks B, Hawley DM (2012) Interactions between host social behavior, physiology, and disease susceptibility: the role of dominance status and social context. In: Demas GE, Nelson RJ (eds) Ecoimmunology. Oxford University Press, London, pp 440–467

    Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Google Scholar 

  • Gassó D, Feliu C, Ferrer D, Mentaberre G, Casas-Díaz E, Velarde R, Fernández-Aguilar X, Colom-Cadena A, Navarro-Gonzalez N, López-Olvera JR, Lavín S, Fenández-Llario P, Segalés J, Serrano E (2015) Uses and limitations of faecal egg count for assessing worm burden in wild boars. Vet Parasitol 209:133–137

    PubMed  Google Scholar 

  • Gesquiere LR, Khan M, Shek L, Wango TL, Wango EO, Alberts SC, Altmann J (2008) Coping with a challenging environment: effects of seasonal variability and reproductive status on glucocorticoid concentrations of female baboons (Papio cynocephalus). Horm Behav 54:410–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gesquiere LR, Learn NH, Simao MCM, Onyango PO, Alberts SC, Altmann J (2011a) Life at the top: rank and stress in wild male baboons. Science 333:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gesquiere LR, Onyango P, Alberts S, Altmann J (2011b) Endocrinology of year-round reproduction in a highly seasonal habitat: environmental variability in testosterone and glucocorticoids in baboon males. Am J Phys Anthropol 144:169–176

    PubMed  Google Scholar 

  • Gesquiere LR, Wango EO, Alberts SC, Altmann J (2007) Mechanisms of sexual selection: sexual swellings and estrogen concentrations as fertility indicators and cues for male consort decisions in wild baboons. Horm Behav 51:114–125

    CAS  PubMed  Google Scholar 

  • Gesquiere LR, Ziegler TE, Chen PA, Epstein KA, Alberts SC, Altmann J (2014) Measuring fecal testosterone in females and fecal estrogens in males: comparison of RIA and LC/MS/MS methods for wild baboons (Papio cynocephalus). Gen Comp Endocrinol 204:141–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie T, Lonsdorf E, Canfield E et al (2010) Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am J Phys Anthropol 143:534–544

    PubMed  PubMed Central  Google Scholar 

  • Gillespie TR (2006) Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int J Primatol 27:1129–1143

    Google Scholar 

  • Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. P Natl Acad Sci USA 105:566–570

    CAS  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Google Scholar 

  • Griffiths EC, Pedersen AB, Fenton A, Petchey OL (2011) The nature and consequences of coinfection in humans. J Inf Secur 63:200–206

    Google Scholar 

  • Guernier V, Hochberg ME, Guegan J (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biol 2:740–746

    CAS  Google Scholar 

  • Habig B, Archie EA (2015) Social status, immune response and parasitism in males: a meta-analysis. Phil Trans Roy Soc B 370:20140109

    Google Scholar 

  • Habig B, Doellman MM, Woods K, Olansen J, Archie EA (2018) Social status and parasitism in male and female vertebrates: a meta-analysis. Sci Rep 8:3629

    PubMed  PubMed Central  Google Scholar 

  • Hahn N, Proulx D, Muruthi P, Alberts S, Altmann J (2003) Gastrointestinal parasites in free-ranging Kenyan baboons (Papio cynocephalus and P. anubis). Int J Primatol 24:271–279

    Google Scholar 

  • Halvorsen O (1986) On the relationship between social status of host and risk of parasitic infection. Oikos 47:71–74

    Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites. Science 218:384–387

    CAS  PubMed  Google Scholar 

  • Hausfater G (1975) Dominance and reproduction in baboons (Papio cynocephalus). A quantitative analysis. Contrib Primatol 7:1–150

    CAS  PubMed  Google Scholar 

  • Hausfater G, Takacs D (1987) Structure and function of hindquarter presentations in yellow baboons (Papio cynocephalus). Ethology 74:297–319

    Google Scholar 

  • Hausfater G, Watson DF (1976) Social and reproductive correlates of parasite ova emissions by baboons. Nature 262:688–689

    CAS  PubMed  Google Scholar 

  • Hernandez AD (1995) Host grooming and the transmission strategy of Heligmosomoides polygyrus. J Parasitol 81:865–869

    CAS  PubMed  Google Scholar 

  • Holmes JC (1961) Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). I. General effects and comparison with crowding. J Parasitol 47:209–216

    CAS  PubMed  Google Scholar 

  • Huffman M, Gotoh S, Turner L, Hamai M, Yoshida K (1997) Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates 38:111–125

    Google Scholar 

  • Jolles AE, Ezenwa VO, Etienne RS, Turner WC, Olff H (2008) Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 89:2239–2250

    PubMed  Google Scholar 

  • Kuntz RE, Moore JA (1973) Commensals and parasites of African baboons (Papio cynocephalus L. 1766) captured in Rift Valley Province of central Kenya. J Med Primatol 2:236–241

    CAS  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen, RHB (2015) lmerTest: tests in linear mixed effects models. R package version 2.0, https://cran.r-project.org/web/packages/lmerTest/index.html

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    PubMed  Google Scholar 

  • Larsen E, Stewart GL, Niederkorn JY (1991) Trichinella pseudospiralis overcomes innate resistance of the Chinese hamster to Trichinella spiralis. Parasitology 103:465–470

    PubMed  Google Scholar 

  • Lea AJ, Akinyi MY, Nyakundi R, Mareri P, Nyundo F, Kariuki T, Alberts SC, Archie EA, Tung J (2018) Dominance rank-associated gene expression is widespread, sex-specific, and a precursor to high social status in wild male baboons. P Natl Acad Sci USA 115:E12163–E12171

    CAS  Google Scholar 

  • Leclaire S, Faulkner CT (2014) Gastrointestinal parasites in relation to host traits and group factors in wild meerkats Suricata suricatta. Parasitology 141:925–933

    PubMed  Google Scholar 

  • Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    CAS  PubMed  Google Scholar 

  • MacIntosh AJJ, Jacobs A, Garcia C, Shimizu K, Mouri K, Huffman MA, Hernandez AD (2012) Monkeys in the middle: parasite transmission through the social network of a wild primate. PLoS One 7:e51144

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald DB (2007) Predicting fate from early connectivity in a social network. P Natl Acad Sci USA 104:10910–10914

    CAS  Google Scholar 

  • Meade BJ (1983) Host-parasite dynamics among Amboseli baboons. PhD thesis, Virginia Polytechnic Institute

  • Michael E, Bundy DAP (1989) Density dependence in establishment, growth and worm fecundity in intestinal helminthiasis: the population biology of Trichuris muris (Nematoda) infection in CBA/Ca mice. Parasitology 98:451–458

    PubMed  Google Scholar 

  • Mignatti A, Boag B, Cattadori IM (2016) Host immunity shapes the impact of climate changes on the dynamics of parasite infections. P Natl Acad Sci USA 113:2970–2975

    CAS  Google Scholar 

  • Moller AP, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20

    CAS  PubMed  Google Scholar 

  • Muehlenbein MP, Bribiescas RG (2005) Testosterone-mediated immune functions and male life histories. Am J Hum Biol 17:527–558

    PubMed  Google Scholar 

  • Mundry R, Nunn CL (2009) Stepwise model fitting and statistical inference: turning noise into signal pollution. Am Nat 173:119–123

    PubMed  Google Scholar 

  • Mwangi TW, Bethony JM, Brooker S (2006) Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100:551–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Graf CDM, Collins DA, Woolhouse MEJ (1996) Intestinal parasite burden in five troops of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology 112:489–497

    PubMed  Google Scholar 

  • Nakahashi W (2016) Coevolution of female ovulatory signals and male–male competition in primates. J Theor Biol 392:12–22

    PubMed  Google Scholar 

  • Nava-Castro K, Muniz-Hernandez S, Hernandez-Bello R, Morales-Montor J (2011) The neuroimmunoendocrine network during worm helminth infections. ISJ 8:143–152

    Google Scholar 

  • Negro SS, Caudron AK, Dubois M, Delahaut P, Gemmell NJ (2010) Correlation between male social status, testosterone levels, and parasitism in a dimorphic polygynous mammal. PLoS One 5:e12507

    PubMed  PubMed Central  Google Scholar 

  • Nunn CL, Altizer S (2006) Infectious diseases in primates: behavior, ecology, and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nunn CL, Dokey AT-W (2006) Ranging patterns and parasitism in primates. Biol Lett 2:351–354

    PubMed  PubMed Central  Google Scholar 

  • Papier K, Williams GM, Luceres-Catubig R, Ahmed F, Olveda RM, McManus DP, Chy D, Chau TNP, Gray DJ, Ross AGP (2014) Childhood malnutrition and parasitic helminth interactions. Clin Infect Dis 59:234–243

    CAS  PubMed  Google Scholar 

  • Patterson J, Ruckstuhl K (2013) Parasite infection and host group size: a meta-analytical review. Parasitology 140:803–813

    PubMed  PubMed Central  Google Scholar 

  • Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    PubMed  Google Scholar 

  • Pettifer HL (1984) The helminth fauna of the digestive tracts of chacma baboons, Papio ursinus, from different localities in the Transvaal. Onderstepoort J Vet 51:161–170

    CAS  Google Scholar 

  • Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  • Rifkin JL, Nunn CL, Garamszegi LZ (2012) Do animals living in larger groups experience greater parasitism? A meta-analysis. Am Nat 180:70–82

    PubMed  Google Scholar 

  • Rimbach R, Bisanzio D, Galvis N, Link A, Di Fiore A, Gillespie TR (2015) Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Phil Trans Roy Soc B 370:20140110. https://doi.org/10.1098/rstb.2014.0110

    Article  Google Scholar 

  • Rothman JM, Pell AN, Bowman DD (2008) Host-parasite ecology of the helminths in mountain gorillas. J Parasitol 94:834–840

    PubMed  Google Scholar 

  • Schneider-Crease I, Griffin RH, Gomery MA, Bergman TJ, Beehner JC (2017) High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am J Primatol 79 published online, doi:https://doi.org/10.1002/ajp.22684

    Google Scholar 

  • Schülke O, Bhagavatula J, Vigilant L, Ostner J (2010) Social bonds enhance reproductive success in male macaques. Curr Biol 20:2207–2210

    PubMed  Google Scholar 

  • Setchell JM, Bedjabaga IB, Goossens B, Reed P, Wickings EJ, Knapp LA (2007) Parasite prevalence, abundance, and diversity in a semi-free-ranging colony of Mandrillus sphinx. Int J Primatol 28:1345–1362

    Google Scholar 

  • Smith EO (1992) Dispersal in sub-Saharan baboons. Folia Primatol 59:177–185

    CAS  PubMed  Google Scholar 

  • Stancampiano L, Gras LM, Poglayen G (2010) Spatial niche competition among helminth parasites in horse’s large intestine. Vet Parasitol 170:88–95

    CAS  PubMed  Google Scholar 

  • Strait K, Else JG, Eberhard ML (2012) Parasitic diseases of nonhuman primates. In: Abee C, Mansfield K, Tardif S, Morris T (eds) Nonhuman primates in biomedical research. Academic Press, Oxford, pp 197–297

    Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tung J, Archie EA, Altmann J, Alberts SC (2016) Cumulative early life adversity predicts longevity in wild baboons. Nat Commun 7:11181. https://doi.org/10.1038/ncomms11181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tung J, Charpentier MJE, Garfield DA, Altmann J, Alberts SC (2008) Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population. Mol Ecol 17:1998–2011

    CAS  PubMed  Google Scholar 

  • Vitone ND, Altizer S, Nunn CL (2004) Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evol Ecol Res 6:183–199

    Google Scholar 

  • Warburton EM, Kohler SL, Vonhof MJ (2016) Patterns of parasite community dissimilarity: the significant role of land use and lack of distance-decay in a bat–helminth system. Oikos 125:374–385

    Google Scholar 

  • Wilcox JJS, Lane-Degraaf KE, Fuentes A, Hollocher H (2015) Comparative community-level associations of helminth infections and microparasite shedding in wild long-tailed macaques in Bali, Indonesia. Parasitology 142:480–489

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Kenya Wildlife Services, Institute of Primate Research, National Museums of Kenya, National Council for Science and Technology, and members of the Amboseli-Longido pastoralist communities for their cooperation and assistance. We are grateful to Jeanne Altmann for her leadership and collaboration in producing behavioral and demographic data on the Amboseli baboons. The ABRP field team (R.S. Mututua, S. Sayialel, and J.K. Warutere) provided expert assistance with data collection; T. Wango and V. Oudo provided assistance with fecal sample processing. We also thank N. Learn, J. Gordon, and K. Pinc for database design and management. For a complete set of acknowledgments of funding sources, logistical assistance, and data collection and management, please visit http://amboselibaboons.nd.edu/acknowledgements/. We would also like to thank David P. Watts, Justin Wilcox, and an anonymous reviewer for providing commentary on previous drafts of this manuscript.

Funding

This research was supported by the National Science Foundation and the National Institute on Aging, currently through NSF IOS 1456832 and through NIH R01AG053330, R01HD088558, and P01AG031719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Habig.

Ethics declarations

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All protocols were approved by the Institutional Animal Care and Use Committees at Duke University (A0840903) and the University of Notre Dame (13-11-1352).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by D. P. Watts

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habig, B., Jansen, D.A.W.A.M., Akinyi, M.Y. et al. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav Ecol Sociobiol 73, 134 (2019). https://doi.org/10.1007/s00265-019-2748-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-019-2748-y

Keywords

  • Dominance rank
  • Glucocorticoids
  • Papio cynocephalus
  • Parasitism
  • Social connectedness
  • Testosterone