Resting networks and personality predict attack speed in social spiders

Abstract

Groups of social predators capture large prey items collectively, and their social interaction patterns may impact how quickly they can respond to time-sensitive predation opportunities. We investigated whether various organizational levels of resting interactions (individual, sub-group, group), observed at different intervals leading up to a collective prey attack, impacted the predation speed of colonies of the social spider Stegodyphus dumicola. We found that in adult spiders, overall group connectivity (average degree) increased group attack speed. However, this effect was detected only immediately before the predation event; connectivity between 2 and 4 days before prey capture had little impact on the collective dynamics. Significantly, lower social proximity of the group’s boldest individual to other group members (closeness centrality) immediately prior and 2 days before prey capture was associated with faster attack speeds. These results suggest that for adult spiders, the long-lasting effects of the boldest individual on the group’s attack dynamics are mediated by its role in the social network, and not only by its boldness. This suggests that behavioural traits and social network relationships should be considered together when defining keystone individuals in some contexts. By contrast, for subadult spiders, while the group maximum boldness was negatively correlated with latency to attack, no significant resting network predictors of latency to attack were found. Thus, separate behavioural mechanisms might play distinctive roles in determining collective outcomes at different developmental stages, timescales, and levels of social organization.

Significance statement

Certain animals in a group, such as leaders, may have a more important role than other group members in determining their collective behaviour. Often, these individuals are defined by their behavioural attributes, for example, being bolder than others. We show that in social spiders both the behavioural traits of the influential individual, and its interactions with other group members, shape its role in affecting how quickly the group collectively attacks prey.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data availability

The datasets generated and analysed during the study will be available in an online data repository upon acceptance of the paper.

References

  1. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J Roy Soc Interface 4:879–891. https://doi.org/10.1098/rsif.2007.1100

    Article  Google Scholar 

  2. Bednarz JC (1988) Cooperative hunting in Harris’ hawks (Parabuteo unicinctus). Science 239:1525–1527. https://doi.org/10.1126/science.239.4847.1525

    CAS  Article  Google Scholar 

  3. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783. https://doi.org/10.1016/j.anbehav.2008.12.022

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bilde T, Coates KS, Birkhofer K, Bird T, Maklakov AA, Lubin Y, Aviles L (2007) Survival benefits select for group living in a social spider despite reproductive costs. J Evol Biol 20:2412–2426. https://doi.org/10.1111/j.1420-9101.2007.01407.x

    CAS  Article  PubMed  Google Scholar 

  5. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368. https://doi.org/10.1016/j.tree.2008.04.003

    Article  PubMed  Google Scholar 

  6. Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Temporal dynamics and network analysis. Methods Ecol Evol 3:958–972. https://doi.org/10.1111/j.2041-210X.2012.00236.x

    Article  Google Scholar 

  7. Boesch C (2002) Cooperative hunting roles among Taï chimpanzees. Hum Nat 13:27–46. https://doi.org/10.1007/s12110-002-1013-6

    Article  PubMed  Google Scholar 

  8. Bradoo B (1980) Feeding behaviour and recruitment display in the social spider Stegodyphus sarasinorum Karsch (Araneae, Eresidae). Tijdschr entomol 123:89-104.

  9. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity clustering. IEEE Trans Knowl Data Eng 20:172–188. https://doi.org/10.1109/TKDE.2007.190689

    Article  Google Scholar 

  10. Brown C, Irving E (2014) Individual personality traits influence group exploration in a feral guppy population. Behav Ecol 25:95–101. https://doi.org/10.1093/beheco/art090

    Article  Google Scholar 

  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  12. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6

    Article  Google Scholar 

  13. Conradt L, Roper TJ (2003) Group decision-making in animals. Nature 421:155–158. https://doi.org/10.1038/Nature01294

    CAS  Article  PubMed  Google Scholar 

  14. Creel S, Creel NM (1995) Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim Behav 50:1325–1339. https://doi.org/10.1016/0003-3472(95)80048-4

    Article  Google Scholar 

  15. Firth JA, Voelkl B, Farine DR, Sheldon BC (2015) Experimental evidence that social relationships determine individual foraging behavior. Curr Biol 25:3138–3143. https://doi.org/10.1016/j.cub.2015.09.075

    CAS  Article  PubMed  Google Scholar 

  16. Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429. https://doi.org/10.1038/nature04326

    CAS  Article  PubMed  Google Scholar 

  17. Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87:178–183. https://doi.org/10.1080/01621459.1992.10475190

    Article  Google Scholar 

  18. Fox J, Weisberg S (2011) An R companion to applied regression, Second edn. Sage, Thousand Oaks

  19. Grinsted L, Pruitt JN, Settepani V, Bilde T (2013) Individual personalities shape task differentiation in a social spider. Proc R Soc B 280:20131407. https://doi.org/10.1098/rspb.2013.1407

    Article  PubMed  Google Scholar 

  20. Guevara J, Gonzaga MO, Vasconcellos-Neto J, Avilés L (2011) Sociality and resource use: insights from a community of social spiders in Brazil. Behav Ecol 22:630–638. https://doi.org/10.1093/beheco/arr022

    Article  Google Scholar 

  21. Harwood G, Avilés L (2013) Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders. Biol Lett 9:20130621. https://doi.org/10.1098/rsbl.2013.0621

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hedrick AV, Kortet R (2012) Sex differences in the repeatability of boldness over metamorphosis. Behav Ecol Sociobiol 66:407–412. https://doi.org/10.1007/s00265-011-1286-z

    Article  Google Scholar 

  23. Hedrick AV, Riechert SE (1989) Genetically-based variation between two spider populations in foraging behavior. Oecologia 80:533–539. https://doi.org/10.1007/bf00380078

    Article  PubMed  Google Scholar 

  24. Henningsen A (2017) censReg: Censored Regression (Tobit) Models. R package version 0.5 -26. https://cran.r-project.org/package=censReg

  25. Henschel JR, Lubin YD, Schneider J (1995) Sexual competition in an inbreeding social spider, Stegodyphus dumicola (Araneae: Eresidae). Insect Soc 42:419–426. https://doi.org/10.1007/BF01242170

    Article  Google Scholar 

  26. Holekamp KE, Smith JE, Strelioff CC, Van Horn RC, Watts HE (2012) Society, demography and genetic structure in the spotted hyena. Mol Ecol 21:613–632. https://doi.org/10.1111/j.1365-294X.2011.05240.x

    Article  PubMed  Google Scholar 

  27. Hunt ER, Mi B, Fernandez C, Wong BM, Pruitt JN, Pinter-Wollman N (2018) Social interactions shape individual and collective personality in social spiders. Proc R Soc B 285:20181366. https://doi.org/10.1098/rspb.2018.1366

    Article  PubMed  Google Scholar 

  28. Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A (2014) Behavioural syndromes and social insects: personality at multiple levels. Biol Rev 89:48–67. https://doi.org/10.1111/Brv.12042

    Article  PubMed  Google Scholar 

  29. Junghanns A, Holm C, Schou MF, Sørensen AB, Uhl G, Bilde T (2017) Extreme allomaternal care and unequal task participation by unmated females in a cooperatively breeding spider. Anim Behav 132:101–107. https://doi.org/10.1016/j.anbehav.2017.08.006

    Article  Google Scholar 

  30. Keiser CN, Pruitt JN (2014) Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc R Soc B 281:20141424. https://doi.org/10.1098/rspb.2014.1424

    Article  PubMed  Google Scholar 

  31. Keiser CN, Jones DK, Modlmeier AP, Pruitt JN (2014) Exploring the effects of individual traits and within-colony variation on task differentiation and collective behavior in a desert social spider. Behav Ecol Sociobiol 68:839–850. https://doi.org/10.1007/s00265-014-1696-9

    Article  Google Scholar 

  32. Keiser CN, Wright CM, Pruitt JN (2016) Increased bacterial load can reduce or negate the effects of keystone individuals on group collective behaviour. Anim Behav 114:211–218. https://doi.org/10.1016/j.anbehav.2016.02.010

    Article  Google Scholar 

  33. Krafft B, Pasquet A (1991) Synchronized and rhythmical activity during the prey capture in the social spider Anelosimus eximius (Araneae, Theridiidae). Insect Soc 38:83–90. https://doi.org/10.1007/bf01242716

    Article  Google Scholar 

  34. Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, USA

  35. Krause J, Croft DP, James R (2007) Social network theory in the behavioural sciences: potential applications. Behav Ecol Sociobiol 62:15–27. https://doi.org/10.1007/s00265-007-0445-8

    Article  Google Scholar 

  36. Krause J, James R, Croft DP (2010) Personality in the context of social networks. Philos Trans R Soc B 365:4099–4106. https://doi.org/10.1098/rstb.2010.0216

    CAS  Article  Google Scholar 

  37. Krause J, James R, Franks DW, Croft DP (2015) Animal social networks. Oxford University Press, USA

    Google Scholar 

  38. Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M (2014) The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol Evol 29:326–335. https://doi.org/10.1016/j.tree.2014.04.002

    Article  PubMed  Google Scholar 

  39. Laskowski KL, Pruitt JN (2014) Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. Proc R Soc B 281:20133166. https://doi.org/10.1098/rspb.2013.3166

    Article  PubMed  Google Scholar 

  40. Laskowski KL, Montiglio P-O, Pruitt JN (2016) Individual and group performance suffers from social niche disruption. Am Nat 187:776–785. https://doi.org/10.1086/686220

    Article  PubMed  Google Scholar 

  41. Lichtenstein JL, Wright CM, Luscuskie LP, Montgomery GA, Pinter-Wollman N, Pruitt JN (2017) Participation in cooperative prey capture and the benefits gained from it are associated with individual personality. Curr Zool 63(5):561–567. https://doi.org/10.1093/cz/zow097

    Article  PubMed  Google Scholar 

  42. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359. https://doi.org/10.1038/Nature04153

    CAS  Article  PubMed  Google Scholar 

  43. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc B 271:S477–S481. https://doi.org/10.1098/rsbl.2004.0225

    Article  PubMed  Google Scholar 

  44. McDonald DB (2007) Predicting fate from early connectivity in a social network. Proc Natl Acad Sci 104:10910–10914. https://doi.org/10.1073/pnas.0701159104

    CAS  Article  PubMed  Google Scholar 

  45. Modlmeier AP, Forrester NJ, Pruitt JN (2014a) Habitat structure helps guide the emergence of colony-level personality in social spiders. Behav Ecol Sociobiol 68:1965–1972. https://doi.org/10.1007/s00265-014-1802-z

    Article  Google Scholar 

  46. Modlmeier AP, Keiser CN, Watters JV, Sih A, Pruitt JN (2014b) The keystone individual concept: an ecological and evolutionary overview. Anim Behav 89:53–62. https://doi.org/10.1016/j.anbehav.2013.12.020

    Article  Google Scholar 

  47. Modlmeier AP, Laskowski KL, DeMarco AE, Coleman A, Zhao K, Brittingham HA, McDermott DR, Pruitt JN (2014c) Persistent social interactions beget more pronounced personalities in a desert-dwelling social spider. Biol Lett 10:20140419. https://doi.org/10.1098/rsbl.2014.0419

    Article  PubMed  PubMed Central  Google Scholar 

  48. Modlmeier AP, Laskowski KL, Brittingham HA, Coleman A, Knutson KA, Kuo C, McGuirk M, Zhao K, Keiser CN, Pruitt JN (2015) Adult presence augments juvenile collective foraging in social spiders. Anim Behav 109:9–14. https://doi.org/10.1016/j.anbehav.2015.07.033

    Article  Google Scholar 

  49. Morand-Ferron J, Quinn JL (2011) Larger groups of passerines are more efficient problem solvers in the wild. Proc Natl Acad Sci 108:15898–15903. https://doi.org/10.1073/pnas.1111560108

    Article  PubMed  Google Scholar 

  50. Norgaard E (1956) Environment and behaviour of Theridion Saxatile. Oikos 7:159–192. https://doi.org/10.2307/3564917

    Article  Google Scholar 

  51. O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. https://doi.org/10.1007/s11135-006-9018-6

    Article  Google Scholar 

  52. Pasquet A, Krafft B (1992) Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90:121–133. https://doi.org/10.1111/j.1439-0310.1992.tb00826.x

    Article  Google Scholar 

  53. Pike TW, Samanta M, Lindstrom J, Royle NJ (2008) Behavioural phenotype affects social interactions in an animal network. Proc R Soc B 275:2515–2520. https://doi.org/10.1098/rspb.2008.0744

    Article  PubMed  Google Scholar 

  54. Pinter-Wollman N (2012) Personality in social insects: how does worker personality determine colony personality? Curr Zool 58:580–588. https://doi.org/10.1093/czoolo/58.4.580

    Article  Google Scholar 

  55. Pinter-Wollman N, Wollman R, Guetz A, Holmes S, Gordon DM (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. J Roy Soc Interface 8:1562–1573. https://doi.org/10.1098/rsif.2011.0059

    Article  Google Scholar 

  56. Pinter-Wollman N, Hubler J, Holley J-A, Franks NR, Dornhaus A (2012) How is activity distributed among and within tasks in Temnothorax ants? Behav Ecol Sociobiol 66:1407–1420. https://doi.org/10.1007/s00265-012-1396-2

    Article  Google Scholar 

  57. Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D, de Silva S, Waters JS, Prager SD, Sasaki T, Wittemyer G, Fewell J, McDonald DB (2014) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol 25:242–255

    Article  Google Scholar 

  58. Pinter-Wollman N, Keiser CN, Wollman R, Pruitt JN (2016) The effect of keystone individuals on collective outcomes can be mediated through interactions or behavioral persistence. Am Nat 188:240–252. https://doi.org/10.1086/687235

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pinter-Wollman N, Fiore SM, Theraulaz G (2017a) The impact of architecture on collective behaviour. Nat Ecol Evol 1:0111. https://doi.org/10.1038/s41559-017-0111

  60. Pinter-Wollman N, Mi B, Pruitt JN (2017b) Replacing bold individuals has a smaller impact on group performance than replacing shy individuals. Behav Ecol 28:883–889. https://doi.org/10.1093/beheco/arx054

    Article  Google Scholar 

  61. Pitman RL, Durban JW (2012) Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar Mamm Sci 28:16–36. https://doi.org/10.1111/j.1748-7692.2010.00453.x

    Article  Google Scholar 

  62. Pruitt JN, Keiser CN (2014) The personality types of key catalytic individuals shape colonies’ collective behaviour and success. Anim Behav 93:87–95. https://doi.org/10.1016/j.anbehav.2014.04.017

    Article  Google Scholar 

  63. Pruitt JN, Pinter-Wollman N (2015) The legacy effects of keystone individuals on collective behaviour scale to how long they remain within a group. Proc R Soc B 282:89–96. https://doi.org/10.1098/rspb.2015.1766

    Article  Google Scholar 

  64. Riechert SE, Hedrick AV (1993) A test for correlations among fitness-linked behavioural traits in the spider Agelenopsis aperta (Araneae, Agelenidae). Anim Behav 46:669–675. https://doi.org/10.1006/anbe.1993.1243

    Article  Google Scholar 

  65. Robson SK, Traniello JFA (1999) Key individuals and the organization of labor in ants. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects Basel Boston. Birkhauser, Berlin, pp 239–260

    Google Scholar 

  66. Royle NJ, Pike TW, Heeb P, Richner H, Kolliker M (2012) Offspring social network structure predicts fitness in families. Proc R Soc B 279:4914–4922. https://doi.org/10.1098/rspb.2012.1701

    Article  PubMed  Google Scholar 

  67. Ruch J, Dumke M, Schneider J (2015) Social network structure in group-feeding spiders. Behav Ecol Sociobiol 69:1429–1436. https://doi.org/10.1007/s00265-015-1955-4

    Article  Google Scholar 

  68. Scott JP (1962) Critical periods in behavioral development. Science 138:949–958. https://www.jstor.org/stable/1709580

    CAS  Article  Google Scholar 

  69. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293. https://doi.org/10.1007/bf00299306

    Article  Google Scholar 

  70. Shizuka D, Chaine AS, Anderson J, Johnson O, Laursen IM, Lyon BE (2014) Across-year social stability shapes network structure in wintering migrant sparrows. Ecol Lett 17:998–1007. https://doi.org/10.1111/ele.12304

    Article  PubMed  Google Scholar 

  71. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. https://doi.org/10.1016/j.tree.2004.04.009

    Article  PubMed  Google Scholar 

  72. Sih A, Hanser SF, McHugh KA (2009) Social network theory: new insights and issues for behavioral ecologists. Behav Ecol Sociobiol 63:975–988. https://doi.org/10.1007/s00265-009-0725-6

    Article  Google Scholar 

  73. Stamps J, Groothuis TGG (2010) The development of animal personality: relevance, concepts and perspectives. Biol Rev 85:301–325. https://doi.org/10.1111/j.1469-185X.2009.00103.x

    Article  PubMed  Google Scholar 

  74. Stander PE (1992) Cooperative hunting in lions: the role of the individual. Behav Ecol Sociobiol 29:445–454. https://doi.org/10.1007/bf00170175

    Article  Google Scholar 

  75. Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21. https://doi.org/10.1007/s00265-010-1037-6

    Article  Google Scholar 

  76. Tripet F, Nonacs P (2004) Foraging for work and age-based Polyethism: the roles of age and previous experience on task choice in ants. Ethology 110:863–877. https://doi.org/10.1111/j.1439-0310.2004.01023.x

    Article  Google Scholar 

  77. Vital C, Martins EP (2013) Socially-central zebrafish influence group behavior more than those on the social periphery. PLoS One 8:e55503. https://doi.org/10.1371/journal.pone.0055503

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Wey T, Blumstein DT, Shen W, Jordan F (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75:333–344. https://doi.org/10.1016/j.anbehav.2007.06.020

    Article  Google Scholar 

  79. Whitehouse MEA, Lubin Y (1999) Competitive foraging in the social spider Stegodyphus dumicola. Anim Behav 58:677–688. https://doi.org/10.1006/anbe.1999.1168

    CAS  Article  PubMed  Google Scholar 

  80. Whitehouse MEA, Lubin Y (2005) The functions of societies and the evolution of group living: spider societies as a test case. Biol Rev 80:347–361. https://doi.org/10.1017/S1464793104006694

    Article  Google Scholar 

  81. Wilson ADM, Krause J (2012) Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav Ecol 23:1316–1323. https://doi.org/10.1093/beheco/ars123

    Article  Google Scholar 

  82. Witte V, Schliessmann D, Hashim R (2010) Attack or call for help? Rapid individual decisions in a group-hunting ant. Behav Ecol 21:1040–1047. https://doi.org/10.1093/beheco/arq100

    Article  Google Scholar 

  83. Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69:1357–1371. https://doi.org/10.1016/j.anbehav.2004.08.018

    Article  Google Scholar 

  84. Wright CM, Keiser CN, Pruitt JN (2015) Personality and morphology shape task participation, collective foraging and escape behaviour in the social spider Stegodyphus dumicola. Anim Behav 105:47–54. https://doi.org/10.1016/j.anbehav.2015.04.001

    Article  Google Scholar 

  85. Wright CM, Keiser CN, Pruitt JN (2016) Colony personality composition alters colony-level plasticity and magnitude of defensive behaviour in a social spider. Anim Behav 115:175–183. https://doi.org/10.1016/j.anbehav.2016.03.002

    Article  Google Scholar 

Download references

Acknowledgements

We thank the South Africa Department of Tourism, Environment, and Conservation for providing permits for animal collection (FAUNA 1072/2013 and 1691/2015) and Colin Wright and James Lichtenstein for collecting spiders in the field. We further thank Arne Henningsen for the guidance on the ‘censReg’ R package.

Funding

This work was supported by the National Science Foundation IOS grants 1456010 to NPW and 1455895 to JNP, and National Institutes of Health grant GM115509 to NPW and JNP.

Author information

Affiliations

Authors

Contributions

ERH analysed the data and drafted the manuscript, NPW and JNP designed the study, BM, RG, CF, BW and NPW collected the data, and all authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Edmund R. Hunt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. C. Choe

Electronic supplementary material

ESM 1

(DOCX 4376 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hunt, E.R., Mi, B., Geremew, R. et al. Resting networks and personality predict attack speed in social spiders. Behav Ecol Sociobiol 73, 97 (2019). https://doi.org/10.1007/s00265-019-2715-7

Download citation

Keywords

  • Collective behaviour
  • Foraging
  • Keystone individual
  • Boldness
  • Social network analysis
  • Stegodyphus dumicola