Lizard calls convey honest information on body size and bite performance: a role in predator deterrence?

Abstract

When encountering predators, prey animals often signal their ability to fight or flee to discourage the predator from an attack or pursuit. A key requirement for evolutionary stability of these predator-deterrent signals is that they convey honest information on the prey’s fighting or fleeing performance. In this study, we investigate the enigmatic ‘distress call’ of the lacertid lizard Psammodromus algirus, and test whether it conveys reliable information on an individual’s body size, and bite and sprint performance. Our acoustic analyses revealed a complex spectral structure in the vocalization of P. algirus, showing a wide frequency bandwidth, multiple harmonics, and a marked frequency modulation. This spectral design may allow such calls to be perceived by multiple potential predators, as it was assessed by a literature search comparing the call frequency range with the hearing ranges of P. algirus’ top predators. In addition, we found considerable inter-individual variation in the call design of lizards (‘call signatures’), which was linked with inter-individual variation in body size and maximum bite force, but not with sprint speed (a proxy of escape performance). As a whole, our study supports the hypothesis that the vocalizations of P. algirus lizards have the potential to serve as honest calls to deter predators. Further research on the behavioural response of predators towards lizard calls is essential in order to unravel the true predator deterrence potential of these calls.

Significance statement

When eye-to-eye with a predator, prey animals may signal their ability to fight or flee to convince the predator not to attack or pursue them. Reptiles typically use visual displays to deter predators, but fascinatingly, Psammodromus algirus lizards have been observed to vocalize when encountered by predators. Here, we explored the acoustic properties of these calls and examined whether they convey honest information on a lizard’s fighting and fleeing performance. Our recordings indicate that the acoustic profile of the calls fall within the hearing sensitivity of the lizard’s top predators. Moreover, our experiments show a significant link between the acoustic profile of lizard calls and lizard fighting ability, but not with fleeing ability. Together, our results imply that these lizard calls have predator deterrence potential. Additionally, this study provides the first evidence of honest acoustic signalling of performance in a reptile.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson RA, McBrayer LD, Herrel A (2008) Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol J Linn Soc 93:709–720

    Google Scholar 

  2. Arnold EN (1987) Resource partition among lacertid lizards in southern Europe. J Zool 1:739–782

    Google Scholar 

  3. August PV, Anderson JGT (1987) Mammal sounds and motivation-structural rules: a test of the hypothesis. J Mammal 68:1–9

    Google Scholar 

  4. Badiane A, Carazo P, Price-Rees SJ, Ferrando-Bernal M, Whiting MJ (2018) Why blue tongue? A potential UV-based deimatic display in a lizard. Behav Ecol Sociobiol 72:104

    Google Scholar 

  5. Bauwens D, Garland T, Castilla A, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological and behavioral covariation. Evolution 49:848–863

    PubMed  Google Scholar 

  6. Berglund A, Bizazza A, Pilastro A (1996) Armaments and ornaments: an evolutionary explanation of traits with dual utility. Biol J Linn Soc 58:385–399

    Google Scholar 

  7. Bergstrom CT, Lachmann M (2001) Alarm calls as costly signals of antipredator vigilance: the watchful babbler game. Anim Behav 61:535–543

    Google Scholar 

  8. Blair WF (1968) Communication in selected groups: amphibians and reptiles. In: Sebeok TA (ed) Animal communication. Indiana University Press, Bloomington, pp 289–310

    Google Scholar 

  9. Böhme W (1981) Psammodromus algirus (Linnaeus 1766) — Algerischer Sandlaufer. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Band 1. Akademische Verlag, Wiesbaden, pp 479–491

    Google Scholar 

  10. Böhme W, Hutterer R, Bings W (1985) Die Stimme der Lacertidae, speziell der Kanareneidechsen (Reptilia: Sauria). Bonn Zool Beitr 36:337–354

    Google Scholar 

  11. Bowker RG (1980) Sound production in Cnemidophorus gularis. J Herpetol 14:187–188

    Google Scholar 

  12. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates Inc, Sunderland

    Google Scholar 

  13. Broom M, Ruxton GD (2012) Perceptual advertisement by the prey of stalking or ambushing predators. J Theor Biol 315:9–16

    PubMed  Google Scholar 

  14. Caro TM (1995) Pursuit deterrence revisited. Trends Ecol Evol 10:500–503

    CAS  PubMed  Google Scholar 

  15. Carothers JH, Groth JG, Jaksic FM (2001) Vocalization as a response to capture in the central Chilean lizard Liolaemus chiliensis (Tropiduridae). Stud Neotrop Fauna E 36:93–94

    Google Scholar 

  16. Castilla AM, Van Damme R, Bauwens D (1999) Field body temperatures, mechanisms of thermoregulation and evolution of thermal characteristics in lacertid lizards. Natura Croatica 8:253–274

    Google Scholar 

  17. Colafrancesco K, Gridi-Papp M (2016) Vocal sound production and acoustic communication in amphibians and reptiles. In: Suthers RA, Fitch W, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer, New York, pp 51–82

    Google Scholar 

  18. Cooper WE (2001) Multiple roles of tail display by the curly-tailed lizard Leiocephalus carinatus: pursuit deterrent and deflective roles of a social signal. Ethology 107:1137–1149

    Google Scholar 

  19. Cooper WE (2007) Escape and its relationship to pursuit-deterrent signalling in the Cuban curly-tailed lizard Leiocephalus carinatus. Herpetologica 63:144–150

    Google Scholar 

  20. Cooper WE (2010) Timing during predator–prey encounters, duration and directedness of a putative pursuit-deterrent signal by the zebra-tailed lizard, Callisaurus draconoides. Behaviour 147:1675–1691

    Google Scholar 

  21. Cooper WE (2011) Pursuit deterrence, predation risk, and escape in the lizard Callisaurus draconoides. Behav Ecol Sociobiol 65:1833–1841

    Google Scholar 

  22. Cresswell W (1994) Song as a pursuit-deterrent signal, and its occurrence relative to other anti-predation behaviours of skylark (Alauda arvensis) on attack by merlins (Falco columbarius). Behav Ecol Sociobiol 34:217–223

    Google Scholar 

  23. Crowley SR, Pietruszka RD (1983) Aggressiveness and vocalization in the leopard lizard (Gambelia wislizennii): the influence of temperature. Anim Behav 31:1055–1060

    Google Scholar 

  24. Dawkins MS, Guilford T (1991) The corruption of honest signalling. Anim Behav 41:865–873

    Google Scholar 

  25. Dial BE (1986) Tail display in two species of iguanid lizards: a test of the ‘predator signal’ hypothesis. Am Nat 127:103–111

    Google Scholar 

  26. Díaz JA, Carrascal LM (1991) Regional distribution of a Mediterranean lizard: influence of habitat cues and prey abundance. J Biogeogr 18:291–297

    Google Scholar 

  27. Díaz JA, Verdú-Ricoy J, Iraeta P, Llanos-Garrido A, Pérez-Rodríguez A, Salvador A (2017) There is more to the picture than meets the eye: adaptation for crypsis blurs phylogeographical structure in a lizard. J Biogeogr 44:397–408

    Google Scholar 

  28. Díaz-Paniagua C (1976) Alimentación de la culebra bastarda (Malpolon monspessulanus; Ophidia, Colubridae) en el S. O. de España. Doñana Acta Vertebrata 3:113–127

    Google Scholar 

  29. Dooling R (2002) Avian hearing and the avoidance of wind turbines. Technical Report NREL/TP-500-30844. National Renewable Energy Laboratory, Golden, CO, USA

  30. Dooling R, Fay R, Popper A (2000) Comparative hearing: birds and reptiles. Springer Science+Business Media, New York

    Google Scholar 

  31. Driessens T, Huyghe K, Vanhooydonck B, Van Damme R (2015) Messages conveyed by assorted facets of the dewlap, in both sexes of Anolis sagrei. Behav Ecol Sociobiol 69:1251–1264

    Google Scholar 

  32. Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fibre activity in the tokay gecko: I, implications for cochlear processing. J Comp Physiol A 142:203–218

    Google Scholar 

  33. Elemans CPH, Rasmussen JH, Herbst CT, Düring DN, Zollinger SA, Brumm H, Srivastava K, Svane N, Ding M, Larsen ON, Sober SJ, Švec JG (2015) Universal mechanisms of sound production and control in birds and mammals. Nat Commun 6:8978

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Espmark Y, Amundsen T, Rosenqvist G (2000) Animal signals: signalling and signal design in animal communication. Tapir Academic, Trondheim

    Google Scholar 

  35. Ferrara CR, Vogt RC, Sousa-Lima RS, Tardio BM, Bernardes VCD (2014) Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica 70:149–156

    Google Scholar 

  36. Fitch WT, Hauser MD (1995) Vocal production in nonhuman primates: acoustics, physiology, and functional constraints on “honest” advertisement. Am J Primatol 37:191–220

    Google Scholar 

  37. FitzGibbon CD, Fanshawe JH (1988) Stotting in Thomson’s gazelles: an honest signal of condition. Behav Ecol Sociobiol 23:69–74

    Google Scholar 

  38. Fletcher NH (2004) A simple frequency-scaling rule for animal communication. J Acoust Soc Am 115:2334–2338

    PubMed  Google Scholar 

  39. Font E, Carazo P, Pérez i de Lanuza G, Kramer M (2012) Predator-elicited foot shakes in wall lizards (Podarcis muralis): evidence for a pursuit-deterrent function. J Comp Psychol 126:87–96

    PubMed  Google Scholar 

  40. Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55

    PubMed  Google Scholar 

  41. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  42. Gambale PG, Signorelli L, Bastos RP (2014) Individual variation in the advertisement calls of a Neotropical treefrog (Scinax constrictus). Amphibia-Reptilia 35:271–281

    Google Scholar 

  43. Gans C, Maderson PFA (1973) Sound producing mechanisms in recent reptiles: review and comment. Am Zool 13:1195–1203

    Google Scholar 

  44. Godin J-GJ, Davis SA (1995) Who dares, benefits: predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proc R Soc Lond B 259:193–200

    Google Scholar 

  45. Gosavi SM, Gaikwad PS, Gramapurohit NP, Kumar AR (2014) Occurrence of parotoid glands in tadpoles of the tropical frog, Clinotarsus curtipes and their role in predator deterrence. Comp Biochem Physiol A 170:31–37

    CAS  Google Scholar 

  46. Greene HW (1988) Antipredator mechanisms in reptiles. In: Gans C, Huey RB (eds) Biology of the Reptilia. Vol. 16, Ecology B: Defense and Life History. Alan R Liss, New York, pp 1–152

    Google Scholar 

  47. Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  48. Hardy ICW, Briffa M (2013) Animal contests. Cambridge University Press, Cambridge

    Google Scholar 

  49. Hasson O (1991) Pursuit-deterrent signals: communication between prey and predator. Trends Ecol Evol 6:325–329

    CAS  PubMed  Google Scholar 

  50. Herrel A, O’Reilly JC (2006) Ontogenetic scaling of bite force in lizards and turtles. Physiol Biochem Zool 79:31–42

    PubMed  Google Scholar 

  51. Herrel A, Spithoven L, Van Damme R, De Vree F (1999) Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct Ecol 13:289–297

    Google Scholar 

  52. Herrel A, Van Damme R, Vanhooydonck B, De Vree F (2001) The implications of bite performance for diet in two species of lacertid lizards. Can J Zool 79:662–670

    Google Scholar 

  53. Herrel A, Vanhooydonck B, Van Damme R (2004) Omnivory in lacertid lizards: Adaptive evolution or constraint? J Evol Biol 17:974–984. https://doi.org/10.1111/j.1420-9101.2004.00758.x

    CAS  PubMed  Google Scholar 

  54. Herrel A, Joachim R, Vanhooydonck B, Irschick DJ (2006) Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus. Biol J Linn Soc 89:443–454

    Google Scholar 

  55. Hibbitts TJ, Whiting MJ, Stuart-Fox DM (2007) Shouting the odds: vocalization signals status in a lizard. Behav Ecol Sociobiol 61:1169–1176

    Google Scholar 

  56. Hoare M, Labra A (2013) Searching for the audience of the weeping lizard’s distress call. Ehthology 119:860–868

    Google Scholar 

  57. Högstedt G (1983) Adaptation unto death: function of fear screams. Am Nat 121:562–570

    Google Scholar 

  58. Hubáček J, Šugerková M, Gvoždík L (2019) Underwater sound production varies within not between species in sympatric newts. PeerJ 7:e6649

    PubMed  PubMed Central  Google Scholar 

  59. Husak JF, Lappin KA, Fox S, Lemon-Espinal J (2006) Bite-force performance predicts dominance in male venerable collared lizards (Crotaphytus antiquus). Copeia 2006:623–629

    Google Scholar 

  60. Huyghe K, Vanhooydonck B, Scheers H, Molina-Borja M, Van Damme R (2005) Morphology, performance and fighting capacity in male lizards, Gallotia galloti. Funct Ecol 19:800–807

    Google Scholar 

  61. Jackson MK (2012) Psychology of language. Nova Science Publishers, New York

    Google Scholar 

  62. Janik VM, Sayigh LS, Wells RS (2006) Signature whistle shape conveys identity information to bottlenose dolphins. Proc Natl Acad Sci U S A 103:8293–8297

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson CR (1976) Some behavioural observations on wild and captive sand monitors, Varanus gouldii (Sauria: Varanidae). Zool J Linnean Soc 59:377–380

    Google Scholar 

  64. Jono T, Inui Y (2012) Secret calls from under the eaves: acoustic behavior of the Japanese house gecko, Gecko japonicus. Copeia 2012:145–149

    Google Scholar 

  65. Labra A, Sufán-Catalan J, Solis R, Penna M (2007) Hissing sounds by the lizard Pristidactylus volcanensis. Copeia 2007:1019–1023

    Google Scholar 

  66. Labra A, Silva G, Norambuena F, Velazquez N, Penna M (2013) Acoustic features of the weeping lizard’s distress call. Copeia 2013:206–212

    Google Scholar 

  67. Labra A, Reyes-Olivares C, Weymann M, Ebensperger L (2016) Asymmetric response to heterotypic distress calls in the lizard Liolaemus chiliensis. Ethology 122:758–768

    Google Scholar 

  68. Lailvaux SP, Irschick DJ (2007) The evolution of performance-based male fighting ability in Caribbean Anolis lizards. Am Nat 170:573–586

    PubMed  Google Scholar 

  69. Lailvaux SP, Herrel A, Vanhooydonck B, Meyers JJ, Irschick DJ (2004) Performance capacity, fighting tactics and the evolution of life-stage male morphs in the green anole lizard (Anolis carolinensis). Proc R Soc Lond B 271:2501–2508

    Google Scholar 

  70. Lailvaux SP, Gilbert RL, Edwards JR (2012) A performance-based cost to honest signalling in male green anole lizards (Anolis carolinensis). Proc R Soc Lond B 279:2841–2848

    Google Scholar 

  71. Larsen ON, Dabelsteen T (1990) Directionality of blackbird vocalization. Implications for vocal communication and its further study. Scand J Ornithol 21:37–45

    Google Scholar 

  72. Leal M (1999) Honest signalling during prey-predator interactions in the lizard Anolis cristatellus. Anim Behav 58:521–526

    CAS  PubMed  Google Scholar 

  73. Leal M, Rodríguez-Robles JA (1995) Antipredator responses of Anolis cristatellus (Sauria, Polychrotidae). Copeia 1995:155–161

    Google Scholar 

  74. Leal M, Rodríguez-Robles JA (1997a) Signalling displays during predator–prey interactions in a Puerto Rican anole, Anolis cristatellus. Anim Behav 54:1147–1154

    CAS  PubMed  Google Scholar 

  75. Leal M, Rodríguez-Robles JA (1997b) Antipredator responses of the Puerto Rican giant anole, Anolis cuvieri (Squamata: Polychrotidae). Biotropica 29:372–375

    Google Scholar 

  76. Leary CJ (2001) Evidence of convergent character displacement in release vocalizations of Bufo fowleri and Bufo terrestris (Anura; Bufonidae). Anim Behav 61:431–438

    Google Scholar 

  77. Lengagne T, Lauga J, Aubin T (2001) Intra-syllabic acoustic signatures used by the king penguin in parent-chick recognition: an experimental approach. J Exp Biol 204:663–672

    CAS  PubMed  Google Scholar 

  78. Malkemper E, Topinka V, Burda H (2015) A behavioral audiogram of the red fox (Vulpes vulpes). Hear Res 320:30–37

    PubMed  Google Scholar 

  79. Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer-Verlag, New York

    Google Scholar 

  80. Manley GA, Kraus E (2010) Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J Exp Biol 213:1876–1885

    PubMed  Google Scholar 

  81. Marcellini D (1978) The acoustic behavior of lizards. In: Greenberg N, PD ML (eds) Behavior and neurology of lizards: an interdisciplinary colloquium. States Department of Health, Education, and Welfare Publication, Rockville, pp 77–491

    Google Scholar 

  82. Martín J, López P (1990) Amphibians and reptiles as prey of birds in southwestern Europe. Smithsonian Herp Inf Serv 82:1–43

    Google Scholar 

  83. Martin K, Tucker MA, Rogers TL (2017) Does size matter? Examining the drivers of mammalian vocalizations. Evolution 71:249–260

    PubMed  Google Scholar 

  84. Martins M (1996) Defensive tactics in lizards and snakes: the potential contribution of the neotropical fauna. An Etol 14:185–199

    Google Scholar 

  85. Maynard-Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  86. Mertens R (1946) Die Warn- und Drohreaktionen der Reptilien. Abh Senck Naturf Ges 471:1–108

    Google Scholar 

  87. Milton TA, Jenssen TA (1979) Description and significance of vocalizations by Anolis grahami (Sauria, Iguanidae). Copeia 1979:481–489

    Google Scholar 

  88. Morton ES (1977) On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am Nat 111:855–869

    Google Scholar 

  89. Ouboter P (1990) Vocalization in Podarcis sicula salfii. Amphibia-Reptilia 11:419–425

    Google Scholar 

  90. Pianka E, Vitt L (2003) Lizards: windows to the evolution of diversity. University of California Press, California

    Google Scholar 

  91. Pleguezuelos JM (1989) Distribucion de los reptiles en la provincia de Granada (SE. Peninsula Ibérica). Donana Acta Vertebr 16:15–44

    Google Scholar 

  92. Quinn GP, Keough MJ (2002) Experimental designs and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  93. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  94. Reyes-Olivares C, Labra A (2017) Emisión de sonidos en lagartos nativos de Chile: el estado del arte. Bol Chil Herpetol 4:1–9

    Google Scholar 

  95. Rogers LJ, Kaplan G (2002) Songs, roars and rituals: communication in birds, mammals and other animals. Harvard University Press, Cambridge

    Google Scholar 

  96. Russel AP, Rittenhouse DR, Bauer AM (2000) Laryngotracheal morphology of Afro-Madagascan geckos: a comparative survey. J Morphol 245:241–268

    Google Scholar 

  97. Ruxton GD, Speed MP, Sherratt TM (2004) Avoiding attack. Oxford University Press, Oxford

    Google Scholar 

  98. Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126:87–100

    Google Scholar 

  99. Salvador A (2015) Lagartija colilarga - Psammodromus algirus. In: Salvador A, Marco A (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid, pp 1–20

    Google Scholar 

  100. Salvador A, Martín J, López P (1995) Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav Ecol 6:382–387

    Google Scholar 

  101. Searcy WA, Nowicki S (2005) The evolution of animal communication. Princeton University Press, Princeton

    Google Scholar 

  102. Sherman PW (1977) Nepotism and the evolution of alarm calls: alarm calls of belding’s ground squirrels warn relatives, and thus are expressions of nepotism. Science 197:1246–1253

    CAS  PubMed  Google Scholar 

  103. Shine R (1990) Function and evolution of the frill of the frillneck lizard, Chlarnydosaurus kingii (Sauria: Agarnidae). Biol J Linn Soc 40:11–20

    Google Scholar 

  104. Stein RC (1973) Sound production in vertebrates: summary and prospectus. Am Zool 13:1249–1255

    Google Scholar 

  105. Sueur J (2018) Sound analysis and synthesis with R. Springer, New York

    Google Scholar 

  106. Sueur J, Aubin T, Simonis C (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226

    Google Scholar 

  107. Swaisgood R, Rowe M, Owings D (1999) Assessment of rattlesnake dangerousness by California ground squirrels: exploitation of cues from rattling sounds. Anim Behav 57:1301–1310

    CAS  PubMed  Google Scholar 

  108. Telemeco RS, Baird TA, Shine R (2011) Tail waving in a lizard (Bassiana duperreyi) functions to deflect attacks rather than as a pursuit-deterrent signal. Anim Behav 82:369–375

    Google Scholar 

  109. Tokarz RR (1985) Body size as a factor determining dominance in staged agonistic encounters between male brown anoles (Anolis sagrei). Anim Behav 33:746–753

    Google Scholar 

  110. Vanhooydonck B, Van Damme R (2003) Relationships between locomotor performance, microhabitat use and antidepredator behaviour in lacertid lizards. Funct Ecol 17:160–169

    Google Scholar 

  111. Vanhooydonck B, Herrel A, Van Damme R, Meyers JJ, Irschick DJ (2005a) The relationship between dewlap size and performance changes with age and sex in a green anole (Anolis carolinensis) lizard population. Behav Ecol Sociobiol 59:157–165

    Google Scholar 

  112. Vanhooydonck B, Herrel A, Van Damme R, Irschick DJ (2005b) Does dewlap size predict male bite performance in Jamaican Anolis lizards? Funct Ecol 19:38–42

    Google Scholar 

  113. Vega-Redondo F, Hasson O (1993) A game theoretic model of predator–prey signaling. J Theor Biol 162:309–319

    Google Scholar 

  114. Vergne AL, Avril A, Martin S, Mathevon N (2007) Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns’ calls show an individual signature. Naturwissenschaften 94:49–54

    CAS  PubMed  Google Scholar 

  115. Viljugrein H (1997) The cost of dishonesty. Proc R Soc Lond B 264:815–821

    Google Scholar 

  116. Walkowiak W (2007) Call production and neural basis of vocalization. In: Narins PM, Feng RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 87–112

    Google Scholar 

  117. Wever EG (1978) The reptile ear: its structure and function. Princeton University Press, Princeton

    Google Scholar 

  118. Woodland DJ, Jaafar Z, Knight ML (1980) The pursuit deterrent function of alarm calls. Am Nat 115:748–753

    Google Scholar 

  119. York JR, Baird TA (2016) Juvenile collared lizards adjust tail display frequency in response to variable predatory threat. Ethology 122:37–44

    Google Scholar 

  120. Zahavi A (1975) Mate selection: a selection for a handicap. J Theor Biol 53:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zamora-Camacho FJ, Reguera S, Rubiño-Hispán MV, Moreno-Rueda G (2014) Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol 41:509–517

    Google Scholar 

Download references

Acknowledgments

We thank the ‘El Ventorrillo’ (MNCN, CSIC) field station for the use of their facility and logistical support, Rafael Márquez for providing the recording equipment, and two reviewers for their constructive feedback on a previous draft of the manuscript. Lastly, SB thanks Raoul Van Damme and Jan Scholliers for their help in setting up the lizard racetrack.

Funding

SB is a postdoctoral fellow of the FWO-Flanders (12I8819N), and benefited from a University of Antwerp Young Scientist Grant (OJO2015/4/009). DL is a postdoctoral fellow that benefit from an Atracción de Talento Investigador Grant (2016-T2/AMB-1722) funded by the Comunidad de Madrid (CAM, Spain). Legal authorization and support for the study were provided by the Organismo Autonomo de Parques Nacionales (Spain), with additional financial support from the Ministerio de Economía e Innovación research projects CGL2011-24150/BOS and CGL2014-53523-P.

Author information

Affiliations

Authors

Contributions

SB, DL, and RG-R conceived and designed the study; SB and DL conducted statistical analyses; SB prepared figures, and drafted and revised the manuscript; all authors aided in collecting data and interpreting the results; all authors contributed to editing the final paper.

Corresponding author

Correspondence to Simon Baeckens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. After completion of the experiments, animals were returned in good health at the exact site of capture. The study was performed under license (permit number: 10/056780.9/16) from the Environmental Agency of Madrid Government (‘Consejería de Medio Ambiente de la Comunidad de Madrid’, Spain), and in accordance with the national animal welfare standards and protocols supervised by the Bioethical Committee of the Spanish Research Council (CSIC).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by S. J. Downes

Electronic supplementary material

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baeckens, S., Llusia, D., García-Roa, R. et al. Lizard calls convey honest information on body size and bite performance: a role in predator deterrence?. Behav Ecol Sociobiol 73, 87 (2019). https://doi.org/10.1007/s00265-019-2695-7

Download citation

Keywords

  • Bioacoustics
  • Bite force
  • Honest signalling
  • Psammodromus algirus
  • Sprint speed
  • Vocalizations