Skip to main content

Social modulation of individual differences in dance communication in honey bees

Abstract

Group-living animals must constantly integrate and respond to information from other individuals within the group. The degree to which consistent inter-individual behavioural differences are influenced by social cues in such groups is largely unanswered. We used the honey bee waggle dance as an experimental paradigm to explore this question. Honey bee foragers use the waggle dance behaviour to communicate information about food sources in the environment to their nest mates. This recruitment process incorporates information about the food reward, the colony food stores and the environmental food availability and plays a major role in ensuring efficient exploitation of the food sources available to the colony. We first observed individual foragers visiting the same food source and quantified the probability and intensity of their dance activity. We found that there are consistent inter-individual differences in both measures of dance activity within a forager group. Next, we removed foragers and observed that this led to a significant increase in the average dance activity of some foragers. The individuals which increased their dance activity were the ones which were more active before the removal. Finally, we allowed recruits to join the foragers at the food source, which had a strong inhibitory effect on the dance activity of all the individual foragers. Our study shows that a complex interplay between individual behavioural differences and social interactions drives the dance communication needed to effectively organise the colony’s collective foraging behaviour.

Significance statement

Very little is known about the effect of social cues and signals on consistent inter-individual differences in behaviour amongst workers in the same colony in social insects. We studied this in the recruitment behaviour of honey bee foragers, the dance communication. Foragers visiting the same food source consistently differed in their dance activity, suggesting that there were strong inter-individual differences in the perception of the food reward. We then changed the social cues experienced by the foragers by either removing some of the foragers or allowing recruits to forage at the same food source. We found that the removal of some foragers had an individual specific effect, whereas the presence of all recruits affected all foragers. Our results show that the regulation of foraging in honey bees involves the social modulation of consistent differences in recruitment activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Ghamdi AA, Adgaba N, Tadesse Y et al (2017) Comparative study on the dynamics and performances of Apis mellifera jemenitica and imported hybrid honeybee colonies in southwestern Saudi Arabia. Saudi J Biol Sci 24:1086–1093. https://doi.org/10.1016/j.sjbs.2017.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al Toufailia H, Grüter C, Ratnieks FLW (2013) Persistence to unrewarding feeding locations by honeybee foragers (Apis mellifera): the effects of experience, resource profitability and season. Ethology 119:1096–1106. https://doi.org/10.1111/eth.12170

    Article  Google Scholar 

  3. Aplin LM, Firth JA, Farine DR, Voelkl B, Crates RA, Culina A, Garroway CJ, Hinde CA, Kidd LR, Psorakis I, Milligan ND, Radersma R, Verhelst BL, Sheldon BC (2015) Consistent individual differences in the social phenotypes of wild great tits, Parus major. Anim Behav 108:117–127. https://doi.org/10.1016/j.anbehav.2015.07.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Beekman M, Lew JB (2007) Foraging in honeybees—when does it pay to dance? Behav Ecol 19:255–261. https://doi.org/10.1093/beheco/arm117

    Article  Google Scholar 

  5. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783. https://doi.org/10.1016/j.anbehav.2008.12.022

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440. https://doi.org/10.1146/annurev.ento.46.1.413

    CAS  Article  PubMed  Google Scholar 

  7. Beshers SN, Huang ZY, Oono Y, Robinson GE (2001) Social inhibition and the regulation of temporal polyethism in honey bees. J Theor Biol 213:461–479. https://doi.org/10.1006/jtbi.2001.2427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Blumstein DT, Petelle MB, Wey TW (2013) Defensive and social aggression: repeatable but independent. Behav Ecol 24:457–461. https://doi.org/10.1093/beheco/ars183

    Article  Google Scholar 

  9. Breed MD, Williams DB, Queral A (2002) Demand for task performance and workforce replacement: undertakers in honeybee, Apis mellifera, colonies. J Insect Behav 15:319–329. https://doi.org/10.1023/A:1016261008322

    Article  Google Scholar 

  10. Briffa M, Greenaway J (2011) High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria). PLoS One 6:e21963. https://doi.org/10.1371/journal.pone.0021963

    CAS  Article  Google Scholar 

  11. Buatois A, Lihoreau M (2016) Evidence of trapline foraging in honeybees. J Exp Biol 219:2426–2429. https://doi.org/10.1242/jeb.143214

    Article  PubMed  Google Scholar 

  12. Cappa F, Bruschini C, Cipollini M, Pieraccini G, Cervo R (2014) Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees. Naturwissenschaften 101:149–152. https://doi.org/10.1007/s00114-013-1135-1

    CAS  Article  PubMed  Google Scholar 

  13. Charbonneau D, Blonder B, Dornhaus A (2013) Social insects: a model system for network dynamics. In: Understanding Complex Systems Springer, Berlin, Heidelberg, pp 217–244

  14. Charbonneau D, Sasaki T, Dornhaus A (2017) Who needs ‘lazy’ workers? Inactive workers act as a ‘reserve’ labor force replacing active workers, but inactive workers are not replaced when they are removed. PLoS One 12:1–20. https://doi.org/10.1371/journal.pone.0184074

    CAS  Article  Google Scholar 

  15. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377. https://doi.org/10.1007/s001140050636

    CAS  Article  Google Scholar 

  16. Claus O. Wilke (2018) cowplot: streamlined plot theme and plot annotations for “ggplot2”. R package version 0.9.3. https://CRAN.R-project.org/package=cowplot. Accessed 20 July 2017

  17. Coffey MF, Breen J (1997) Seasonal variation in pollen and nectar sources of honey bees in Ireland. J Apic Res 36:63–76. https://doi.org/10.1080/00218839.1997.11100932

    Article  Google Scholar 

  18. Cook CN, Mosqueiro T, Brent CS, Ozturk C, Gadau J, Pinter-Wollman N, Smith BH (2018) Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J Anim Ecol 88:236. https://doi.org/10.1111/1365-2656.12911

    Article  PubMed  Google Scholar 

  19. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516. https://doi.org/10.1038/nature03236

    CAS  Article  PubMed  Google Scholar 

  20. Crall JD, Gravish N, Mountcastle AM, Kocher SD, Oppenheimer RL, Pierce NE, Combes SA (2018) Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-03561-w

    CAS  Article  Google Scholar 

  21. Dall SRX, Houston AI, McNamara JM (2004) The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739. https://doi.org/10.1111/j.1461-0248.2004.00618.x

    Article  Google Scholar 

  22. De Marco RJ (2006) How bees tune their dancing according to their colony’s nectar influx: re-examining the role of the food-receivers’ `eagerness’. J Exp Biol 209:421–432. https://doi.org/10.1242/jeb.02025

    Article  PubMed  Google Scholar 

  23. De Marco RJ, Farina WM (2001) Changes in food source profitability affect the trophallactic and dance behavior of forager honeybees (Apis mellifera L.). Behav Ecol Sociobiol 50:441–449. https://doi.org/10.1007/s002650100382

    Article  Google Scholar 

  24. Değirmenci L, Thamm M, Scheiner R (2018) Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera). J Insect Physiol 106:65–70. https://doi.org/10.1016/j.jinsphys.2017.09.009

    CAS  Article  PubMed  Google Scholar 

  25. Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012) Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J Anim Ecol 81:116–126. https://doi.org/10.1111/j.1365-2656.2011.01877.x

    Article  Google Scholar 

  26. Donaldson-Matasci MC, Dornhaus A (2012) How habitat affects the benefits of communication in collectively foraging honey bees. Behav Ecol Sociobiol 66:583–592. https://doi.org/10.1007/s00265-011-1306-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dornhaus A, Chittka L (2004) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401. https://doi.org/10.1007/s00265-003-0726-9

    Article  Google Scholar 

  28. Dornhaus A, Klugl F, Oechslein C et al (2006) Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model. Behav Ecol 17:336–344. https://doi.org/10.1093/beheco/arj036

    Article  Google Scholar 

  29. Dukas R, Visscher PK (1994) Lifetime learning by foraging honey bees. Anim Behav 48:1007–1012. https://doi.org/10.1006/anbe.1994.1333

    Article  Google Scholar 

  30. Dunn PK, Smyth GK (2008) Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Stat Comput 18:73–86. https://doi.org/10.1007/s11222-007-9039-6

    Article  Google Scholar 

  31. Dunn PK, Smyth GK (2005) Series evaluation of Tweedie exponential dispersion models. Stat Comput 15:267–280. https://doi.org/10.1007/s11222-005-4070-y

    Article  Google Scholar 

  32. Dyer FC, Seeley TD (1991) Nesting behavior and the evolution of worker tempo in four honey bee species. Ecology 72:156–170. https://doi.org/10.2307/1938911

    Article  Google Scholar 

  33. Farina WM (2000) The interplay between dancing and trophallactic behavior in the honey bee Apis mellifera. J Comp Physiol - A 186:239–245. https://doi.org/10.1007/s003590050424

    CAS  Article  PubMed  Google Scholar 

  34. Farina WM (1996) Food-exchange by foragers in the hive—a means of communication among honey bees? Behav Ecol 38:59–64. https://doi.org/10.1007/s002650050217

    Article  Google Scholar 

  35. Farine DR, Aplin LM, Garroway CJ, Mann RP, Sheldon BC (2014) Collective decision making and social interaction rules in mixed-species flocks of songbirds. Anim Behav 95:173–182. https://doi.org/10.1016/j.anbehav.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Firth JA, Voelkl B, Crates RA, Aplin LM, Biro D, Croft DP, Sheldon BC (2017) Wild birds respond to flockmate loss by increasing their social network associations to others. Proceedings Biol Sci 284:20170299. https://doi.org/10.1098/rspb.2017.0299

    Article  Google Scholar 

  37. Firth JA, Voelkl B, Farine DR, Sheldon BC (2015) Experimental evidence that social relationships determine individual foraging behavior. Curr Biol 25:3138–3143. https://doi.org/10.1016/j.cub.2015.09.075

    CAS  Article  PubMed  Google Scholar 

  38. von Frisch K (1974) Decoding the language of the bee. Science. 185:663–668. https://doi.org/10.1126/science.185.4152.663

    CAS  Article  Google Scholar 

  39. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

  40. Gardner KE, Foster RL, O’Donnell S (2007) Experimental analysis of worker division of labor in bumblebee nest thermoregulation (Bombus huntii, Hymenoptera: Apidae). Behav Ecol Sociobiol 61:783–792. https://doi.org/10.1007/s00265-006-0309-7

    Article  Google Scholar 

  41. Gardner KE, Seeley TD, Calderone NW (2008) Do honeybees have two discrete dances to advertise food sources? Anim Behav 75:1291–1300. https://doi.org/10.1016/j.anbehav.2007.09.032

    Article  Google Scholar 

  42. George E, Brockmann A (2018) Dataset for “Social regulation of individual differences in communication within honey bee foraging groups”. https://doi.org/10.17632/c85d3wczbs.2

  43. Gordon DM, Goodwin BC, Trainor LEH (1992) A parallel distributed model of the behaviour of ant colonies. J Theor Biol 156:293–307. https://doi.org/10.1016/S0022-5193(05)80677-0

    Article  Google Scholar 

  44. Grüter C, Farina WM (2009) The honeybee waggle dance: can we follow the steps? Trends Ecol Evol 24:242–247. https://doi.org/10.1016/j.tree.2008.12.007

    Article  PubMed  Google Scholar 

  45. Grüter C, Keller L (2016) Inter-caste communication in social insects. Curr Opin Neurobiol 38:6–11. https://doi.org/10.1016/j.conb.2016.01.002

    CAS  Article  PubMed  Google Scholar 

  46. Grüter C, Moore H, Firmin N, Helantera H, Ratnieks FLW (2011) Flower constancy in honey bee workers (Apis mellifera) depends on ecologically realistic rewards. J Exp Biol 214:1397–1402. https://doi.org/10.1242/jeb.050583

    Article  Google Scholar 

  47. Hölldobler B, Wilson EO (2009) The superorganism. W.W. Norton & Company, Inc.

  48. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. https://doi.org/10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  49. Ireland T, Garnier S (2018) Architecture, space and information in constructions built by humans and social insects: a conceptual review. Philos Trans R Soc B Biol Sci 373:26–35. https://doi.org/10.1098/rstb.2017.0244

    Article  Google Scholar 

  50. Jandt JM, Gordon DM (2016) The behavioral ecology of variation in social insects. Curr Opin Insect Sci 15:40–44. https://doi.org/10.1016/j.cois.2016.02.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Jeanson R, Weidenmüller A (2013) Interindividual variability in social insects—proximate causes and ultimate consequences. Biol Rev 89:671–687. https://doi.org/10.1111/brv.12074

    Article  PubMed  Google Scholar 

  52. Johnson BR (2010) Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64:305–316. https://doi.org/10.1007/s00265-009-0874-7

    Article  PubMed  Google Scholar 

  53. Judd TM (1994) The waggle dance of the honey bee: which bees following a dancer successfully acquire the information? J Insect Behav 8:343–354. https://doi.org/10.1007/BF01989363

    Article  Google Scholar 

  54. Kamath A, Primavera SD, Wright CM et al (2018) Collective behavior and colony persistence of social spiders depends on their physical environment. Behav Ecol:1–8. https://doi.org/10.1093/beheco/ary158

    Article  Google Scholar 

  55. Kamil AC, Roitblat HL (1985) The ecology of foraging behavior: implications for animal learning and memory. Avian Cogn Pap 36:141–169. https://doi.org/10.1146/annurev.psych.36.1.141

    CAS  Article  Google Scholar 

  56. Khoury DS, Barron AB, Myerscough MR (2013) Modelling food and population dynamics in honey bee colonies. PLoS One 8:e59084. https://doi.org/10.1371/journal.pone.0059084

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Kietzman PM, Visscher PK (2015) The anti-waggle dance: use of the stop signal as negative feedback. Front Ecol Evol 3:1–5. https://doi.org/10.3389/fevo.2015.00014

    Article  Google Scholar 

  58. Kirchner WH, Lindauer M (1994) The causes of the tremble dance of the honeybee, Apis mellifera. Behav Ecol Sociobiol 35:303–308. https://doi.org/10.1007/BF00184419

    Article  Google Scholar 

  59. Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63:967–973. https://doi.org/10.1007/s00265-009-0747-0

    Article  Google Scholar 

  60. Lau CW, Nieh JC (2010) Honey bee stop-signal production: temporal distribution and effect of feeder crowding. Apidologie 41:87–95. https://doi.org/10.1051/apido/2009052

    Article  Google Scholar 

  61. Lehmann J, Majolo B, McFarland R (2016) The effects of social network position on the survival of wild Barbary macaques, Macaca sylvanus. Behav Ecol 27:20–28. https://doi.org/10.1093/beheco/arv169

    Article  Google Scholar 

  62. Liang ZS, Nguyen T, Mattila HR, Rodriguez-Zas SL, Seeley TD, Robinson GE (2012) Molecular determinants of scouting behavior in honey bees. Science (80- ) 335:1225–1228. https://doi.org/10.1126/science.1213962

    CAS  Article  Google Scholar 

  63. Lindauer M (1952) Ein beitrag zur frage deiarbeitsteilung im bienenstaat. Z Vgl Physiol 34:299–345. https://doi.org/10.1007/BF00298048

    Article  Google Scholar 

  64. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vgl Physiol 36:391–432. https://doi.org/10.1007/BF00345028

    Article  Google Scholar 

  65. Lindauer M (1949) Über die Einwirkung von Duft- und Geschmacksstoffen sowie anderer Faktoren auf die Tänze der Bienen. Z Vgl Physiol 31:348–412. https://doi.org/10.1007/BF00297951

    CAS  Article  PubMed  Google Scholar 

  66. Mailleux A-C, Deneubourg J-L, Detrain C (2003) Regulation of ants’ foraging to resource productivity. Proc R Soc B Biol Sci 270:1609–1616. https://doi.org/10.1098/rspb.2003.2398

    Article  Google Scholar 

  67. McDonald DB (2007) Predicting fate from early connectivity in a social network. Proc Natl Acad Sci 104:10910–10914. https://doi.org/10.1073/pnas.0701159104

    CAS  Article  PubMed  Google Scholar 

  68. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science (80- ) 340:1090–1093. https://doi.org/10.1126/science.1234316

    CAS  Article  Google Scholar 

  69. Michelena P, Jeanson R, Deneubourg J-L, Sibbald AM (2010) Personality and collective decision-making in foraging herbivores. Proc R Soc B Biol Sci 277:1093–1099. https://doi.org/10.1098/rspb.2009.1926

    Article  Google Scholar 

  70. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x

    Article  Google Scholar 

  71. Naug D, Gadagkar R (1999) Flexible division of labor mediated by social interactions in an insect colony—a simulation model. J Theor Biol 197:123–133. https://doi.org/10.1006/jtbi.1998.0862

    CAS  Article  PubMed  Google Scholar 

  72. Nieh JC (2010) A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr Biol 20:310–315. https://doi.org/10.1016/j.cub.2009.12.060

    CAS  Article  PubMed  Google Scholar 

  73. Nieh JC (1993) The stop signal of honey-bees—reconsidering its message. Behav Ecol Sociobiol 33:51–56. https://doi.org/10.1007/BF00164346

    Article  Google Scholar 

  74. O’Donnell S (1998) Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135:173–193. https://doi.org/10.1163/156853998793066348

    Article  Google Scholar 

  75. Pastor KA, Seeley TD (2005) The brief piping signal of the honey bee: begging call or stop signal? Ethology 111:775–784. https://doi.org/10.1111/j.1439-0310.2005.01116.x

    Article  Google Scholar 

  76. Pendrel BA, Plowright RC (1981) Larval feeding by adult bumble bee workers (Hymenoptera: Apidae). Behav Ecol Sociobiol 8:71–76. https://doi.org/10.1007/BF00300817

    Article  Google Scholar 

  77. Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. https://doi.org/10.1146/annurev-ento-120811-153631

    CAS  Article  Google Scholar 

  78. Pinheiro J, Bates D, DebRoy S, et al (2018) Linear and nonlinear mixed effects models. URL https://cran.r-project.org/web/packages/nlme/nlme.pdf

  79. Pinter-Wollman N, Hubler J, Holley J-A, Franks NR, Dornhaus A (2012) How is activity distributed among and within tasks in Temnothorax ants? Behav Ecol Sociobiol 66:1407–1420. https://doi.org/10.1007/s00265-012-1396-2

    Article  Google Scholar 

  80. Pinter-Wollman N, Penn A, Theraulaz G, Fiore SM (2018) Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour. Philos Trans R Soc B Biol Sci 373:20170232. https://doi.org/10.1098/rstb.2017.0232

    Article  Google Scholar 

  81. Potier S, Carpentier A, Grémillet D, Leroy B, Lescroël A (2015) Individual repeatability of foraging behaviour in a marine predator, the great cormorant, Phalacrocorax carbo. Anim Behav 103:83–90. https://doi.org/10.1016/j.anbehav.2015.02.008

    Article  Google Scholar 

  82. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 02 July 2017

  83. Rivera MD, Donaldson-Matasci MC, Dornhaus A (2015) Quitting time: when do honey bee foragers decide to stop foraging on natural resources? Front Ecol Evol 3:1–9. https://doi.org/10.3389/fevo.2015.00050

    Article  Google Scholar 

  84. RStudio Team (2016) RStudio: Integrated Development for R. RStudio, Inc., Boston. http://www.rstudio.com/. Accessed 02 July 2017

  85. Rudin FS, Tomkins JL, Simmons LW (2018) The effects of the social environment and physical disturbance on personality traits. Anim Behav In press:109–121. doi: https://doi.org/10.1016/j.anbehav.2018.02.013, 121

    Article  Google Scholar 

  86. Ryer CH, Olla BL (1995) Influences of food distribution on fish foraging behaviour. Anim Behav 49:411–418. https://doi.org/10.1006/anbe.1995.0054

    Article  Google Scholar 

  87. Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol—a sensory, neural. Behav Physiol 185:1–10. https://doi.org/10.1007/s003590050360

    CAS  Article  Google Scholar 

  88. Scheiner R, Page RE, Erber J (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol Learn Mem 76:138–150. https://doi.org/10.1006/nlme.2000.3996

    CAS  Article  PubMed  Google Scholar 

  89. Scheiner R, Page RE, Erber J (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera) Ricarda. Apidologie 35:133–142. https://doi.org/10.1051/apido:2004001

    Article  Google Scholar 

  90. Schürch R, Grüter C (2014) Dancing bees improve colony foraging success as long-term benefits outweigh short-term costs. PLoS One 9:e104660. https://doi.org/10.1371/journal.pone.0104660

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Schürch R, Ratnieks FLW, Samuelson EEWW, Couvillon MJ (2016) Dancing to her own beat: honey bee foragers communicate via individually calibrated waggle dances. J Exp Biol 219:1287–1289. https://doi.org/10.1242/jeb.134874

    Article  PubMed  Google Scholar 

  92. Schuster AC, Carl T, Foerster K (2017) Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice. Naturwissenschaften 104:10. https://doi.org/10.1007/s00114-017-1430-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge

  94. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293. https://doi.org/10.1007/BF00299306

    Article  Google Scholar 

  95. Seeley TD (1983) Division of labor between scouts and recruits in honeybee foraging. Behav Ecol Sociobiol 12:253–259. https://doi.org/10.1007/BF00290778

    Article  Google Scholar 

  96. Seeley TD (1986) Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav Ecol Sociobiol 19:343–354. https://doi.org/10.1007/BF00295707

    Article  Google Scholar 

  97. Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav Ecol Sociobiol 24:181–199. https://doi.org/10.1007/BF00292101

    Article  Google Scholar 

  98. Seeley TD (1994) Honey bee foragers as sensory units of their colonies. Behav Ecol Sociobiol 34:51–62. https://doi.org/10.1007/BF00175458

    Article  Google Scholar 

  99. Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383. https://doi.org/10.1007/BF00170604

    Article  Google Scholar 

  100. Seeley TD, Tovey CA (1994) Why search time to find a food-storer bee accurately indicates the relative rates of nectar collecting and nectar processing in honey bee colonies. Anim Behav 47:311–316. https://doi.org/10.1006/anbe.1994.1044

    Article  Google Scholar 

  101. Seeley TD, Towne WF (1992) Tactics of dance choice in honey bees: do foragers compare dances? Behav Ecol Sociobiol 30:59–69. https://doi.org/10.1007/BF00168595

    Article  Google Scholar 

  102. Sen Sarma M, Esch HE, Tautz J (2004) A comparison of the dance language in Apis mellifera carnica and Apis florea reveals striking similarities. J Comp Physiol A 190:49–53. https://doi.org/10.1007/s00359-003-0470-7

    CAS  Article  Google Scholar 

  103. Sherman G, Visscher PK (2002) Honeybee colonies achieve fitness through dancing. Nature 419:920–922. https://doi.org/10.1038/nature01127

    CAS  Article  PubMed  Google Scholar 

  104. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. https://doi.org/10.1016/j.tree.2004.04.009

    Article  Google Scholar 

  105. Sih A, Hanser SF, McHugh KA (2009) Social network theory: new insights and issues for behavioral ecologists. Behav Ecol Sociobiol 63:975–988. https://doi.org/10.1007/s00265-009-0725-6

    Article  Google Scholar 

  106. Smith-Aguilar SE, Ramos-Fernández G, Getz WM (2016) Seasonal changes in socio-spatial structure in a group of free-living spider monkeys (Ateles geoffroyi). PLoS One 11:1–28. https://doi.org/10.1371/journal.pone.0157228

    CAS  Article  Google Scholar 

  107. Smyth GK (2002) An efficient algorithm for reml in heteroscedastic regression. J Comput Graph Stat 11:836–847. https://doi.org/10.1198/106186002871

    Article  Google Scholar 

  108. Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: Behavior and Ecology. University of Chicago Press, Chicago

  109. Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644. https://doi.org/10.1111/2041-210X.12797

    Article  Google Scholar 

  110. Martin CS, Farina WM (2016) Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie 47:161–170. https://doi.org/10.1007/s13592-015-0384-8

    Article  Google Scholar 

  111. Tan K, Dong S, Li X, Liu X, Wang C, Li J, Nieh JC (2016) Honey bee inhibitory signaling is tuned to threat severity and can act as a colony alarm signal. PLoS Biol 14:e1002423. https://doi.org/10.1371/journal.pbio.1002423

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Tenczar P, Lutz CC, Rao VD, Goldenfeld N, Robinson GE (2014) Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim Behav 95:41–48. https://doi.org/10.1016/j.anbehav.2014.06.006

    Article  Google Scholar 

  113. Thamm M, Scheiner R (2014) PKG in honey bees: spatial expression, amfor gene expression, sucrose responsiveness, and division of labor. J Comp Neurol 522:1786–1799. https://doi.org/10.1002/cne.23500

    CAS  Article  PubMed  Google Scholar 

  114. Thom C (2003) The tremble dance of honey bees can be caused by hive-external foraging experience. J Exp Biol 206:2111–2116. https://doi.org/10.1242/jeb.00398

    Article  PubMed  Google Scholar 

  115. Thom C, Gilley DC, Tautz J (2003) Worker piping in honey bees (Apis mellifera): the behavior of piping nectar foragers. Behav Ecol Sociobiol 53:199–205. https://doi.org/10.1007/s00265-002-0567-y

    Article  Google Scholar 

  116. Thom C, Seeley TD, Tautz J (2000) A scientific note on the dynamics of labor devoted to nectar foraging in a honey bee colony: number of foragers versus individual foraging activity. Apidologie 31:737–738. https://doi.org/10.1051/apido:2000158

    Article  Google Scholar 

  117. Townsend-Mehler JM, Dyer FC, Maida K (2010) Deciding when to explore and when to persist: a comparison of honeybees and bumblebees in their response to downshifts in reward. Behav Ecol Sociobiol 65:305–312. https://doi.org/10.1007/s00265-010-1047-4

    Article  Google Scholar 

  118. Tran S, Gerlai R (2013) Individual differences in activity levels in zebrafish (Danio rerio). Behav Brain Res 257:224–229. https://doi.org/10.1016/j.bbr.2013.09.040

    Article  PubMed  PubMed Central  Google Scholar 

  119. Traniello J (1989) Foraging strategies of ants. Annu Rev Entomol 34:191–210. https://doi.org/10.1146/annurev.ento.34.1.191

    Article  Google Scholar 

  120. van Oers K, Drent PJ, Dingemanse NJ, Kempenaers B (2008) Personality is associated with extrapair paternity in great tits, Parus major. Anim Behav 76:555–563. https://doi.org/10.1016/j.anbehav.2008.03.011

    Article  Google Scholar 

  121. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer-Verlag, New York

    Book  Google Scholar 

  122. Venkataraman VV, Kraft TS, Dominy NJ, Endicott KM (2017) Hunter-gatherer residential mobility and the marginal value of rainforest patches. Proc Natl Acad Sci 114:3097–3102. https://doi.org/10.1073/pnas.1617542114

    CAS  Article  PubMed  Google Scholar 

  123. Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest author. Ecology 63:1790–1801. https://doi.org/10.2307/1940121

    Article  Google Scholar 

  124. Waddington KD (1982) Honey bee foraging profitability and round dance correlates. J Comp Physiol A 148:297–301. https://doi.org/10.1007/BF00679014

    Article  Google Scholar 

  125. Wario F, Wild B, Couvillon MJ, Rojas R, Landgraf T (2015) Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees. Front Ecol Evol 3:1–14. https://doi.org/10.3389/fevo.2015.00103

    Article  Google Scholar 

  126. Waters JS, Fewell JH (2012) Information processing in social insect networks. PLoS One 7:e40337. https://doi.org/10.1371/journal.pone.0040337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Watson KK, Brent LJN, Horvath JE et al (2016) Genetic influences on social attention in free-ranging rhesus macaques. Anim Behav 27:617–630. https://doi.org/10.1016/j.ccell.2015.04.006.SRSF2

    Article  Google Scholar 

  128. Wells H, Wells PH (1986) Optimal diet, minimal uncertainty and individual constancy in the foraging of honey bees, Apis mellifera. J Anim Ecol 55:881–891. https://doi.org/10.2307/4422

    Article  Google Scholar 

  129. Wickham H (2016) Ggplot2: elegant graphics for data analysis, 2nd edn. Springer International Publishing,

Download references

Acknowledgements

We would like to thank Ravi Kumar Boyapati, Abhishek Anand, Hinal Kharva and other student interns for their help with the behavioural experiments. We would also like to thank Sruthi Unnikrishnan for providing valuable feedback on the manuscript. E.A.G. was supported by a fellowship from National Centre for Biological Sciences—Tata Institute of Fundamental Research; A.B. was supported by National Centre for Biological Sciences—Tata Institute of Fundamental Research institutional funds No. 12P4167.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ebi Antony George.

Ethics declarations

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by D. Naug

Electronic supplementary material

ESM 1

(PDF 778 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

George, E.A., Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav Ecol Sociobiol 73, 41 (2019). https://doi.org/10.1007/s00265-019-2649-0

Download citation

Keywords

  • Social insects
  • Waggle dance
  • Repeatability of behaviour
  • Foragers
  • Response thresholds
  • Social cues