Skip to main content

Advertisement

Log in

Social cohesion and intra-population community structure in southern Australian bottlenose dolphins (Tursiops sp.)

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Defining intra-population community variation in group living mammals provides insights about the impact of environmental, social, and anthropogenic factors on population sub-structuring. Here, we use generalised affiliation indices (GAIs) and social network analysis to investigate social cohesion and intra-population community structure of southern Australian bottlenose dolphins (Tursiops sp.) inhabiting Adelaide’s metropolitan coast in South Australia. Information on the sex and site fidelity of photographically identified individuals was used to investigate the potential link between these parameters and preferred affiliations at the population level. Genetic data was also used to investigate genetic relatedness within and between sex and communities. Overall, dolphins showed non-random associations, with preferred associates prominent amongst females and resident individuals. Dolphins were clustered into two social communities that showed little spatial overlap and were associated with different habitats: a northern, shallow-water community (NSWC) and a southern, deep-water community (SDWC). As expected, preferred associations were more prevalent within than between communities, and analyses of genetic relatedness indicated that dolphins, particularly females, were on average more related within than between communities. Social network metrics varied between communities, with the temporal stability of associations for both communities characterised by rapid disassociations and casual acquaintances. We suggest that these two dolphin communities likely arose due to a combination of ecological and socio-genetic factors. This study enhances our understanding of factors shaping social groups in long-lived mammals and our ability to manage human activities that can impact upon their behaviour and social structure.

Significance statement

Determining how and why individual animals interact and form groups is important for understanding the evolution of sociality and designing management strategies for wildlife conservation. We investigated association patterns and social community structure in southern Australian bottlenose dolphins in Gulf waters of South Australia. Within the study area, dolphins were divided into two separate communities associated with different habitat types. Within these two communities, dolphins formed groups with particular individuals and mostly related individuals amongst females. These findings enhance our understanding of the factors shaping mammalian groups and our ability to manage human activities that can impact upon their behaviour and social structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amos W, Hoelzel A (1991) Long-term preservation of whale skin for DNA analysis. Rep Int Whal Comm 13:99–104

    Google Scholar 

  • Ansmann IC, Parra GJ, Chilvers BL, Lanyon JM (2012) Dolphins restructure social system after reduction of commercial fisheries. Anim Behav 84:575–581

    Article  Google Scholar 

  • Ansmann IC, Lanyon JM, Seddon JM, Parra GJ (2015) Habitat and resource partitioning among Indo-Pacific bottlenose dolphins in Moreton Bay, Australia. Mar Mammal Sci 31:211–230

    Article  Google Scholar 

  • Balshine S, Leach B, Neat F, Reid H, Taborsky M, Werner N (2001) Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). Behav Ecol Sociobiol 50:134–140

    Article  Google Scholar 

  • Bejder L, Fletcher D, Bräger S (1998) A method for testing association patterns of social animals. Anim Behav 56:719–725

    Article  PubMed  CAS  Google Scholar 

  • Bejder L, Samuels A, Whitehead H, Gales N, Mann J, Heithaus M, Watson-Capps J, Flaherty C, Kruetzen M (2006) Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv Biol 20:1791–1798

    Article  PubMed  Google Scholar 

  • Best EC, Seddon JM, Dwyer RG, Goldizen AW (2013) Social preference influences female community structure in a population of wild eastern grey kangaroos. Anim Behav 86:1031–1040

    Article  Google Scholar 

  • Bilgmann K, Griffiths OJ, Allen SJ, Möller LM (2007a) A biopsy pole system for bow-riding dolphins: sampling success, behavioral responses, and test for sampling bias. Mar Mammal Sci 23:218–225

    Article  Google Scholar 

  • Bilgmann K, Möller LM, Harcourt RG, Gibbs SE, Beheregaray LB (2007b) Genetic differentiation in bottlenose dolphins from South Australia: association with local oceanography and coastal geography. Mar Ecol Prog Ser 341:265–276

    Article  CAS  Google Scholar 

  • Blumstein D (2012) Social behaviour. In: Candolin U, Wong B (eds) Behavioural responses to a changing world: mechanisms and consequences. Oxford University Press, Oxford, pp 119–128

    Chapter  Google Scholar 

  • Borgatti SP (2002) NetDraw: graph visualization software. Analytic Technologies, Harvard, https://sites.google.com/site/netdrawsoftware/home

  • Bryars S (2003) An inventory of important coastal fisheries habitats in South Australia. Fish Habitat Program, Primary Industries and Resources South Australia, Adelaide

  • Bryars S (2013) Nearshore marine habitats of the Adelaide and Mount Lofty Ranges NRM region: values, threats and actions. Report to the Adelaide and Mount Lofty Ranges Natural Resources Management Board, Adelaide

  • Byard R, Machado A, Woolford L, Boardman W (2013) Symmetry: the key to diagnosing propeller strike injuries in sea mammals. Forensic Sci Med Pat 9:103–105

    Article  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Caro T, Sherman PW (2011) Endangered species and a threatened discipline: behavioural ecology. Trends Ecol Evol 26:111–118

    Article  PubMed  Google Scholar 

  • Charlton-Robb K, Gershwin L, Thompson R, Austin J, Owen K, McKechnie S (2011) A new dolphin species, the burrunan dolphin Tursiops australis sp. nov., endemic to southern Australian coastal waters. PLoS One 6:e24047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaverri G (2010) Comparative social network analysis in a leaf-roosting bat. Behav Ecol Sociobiol 64:1619–1630

    Article  Google Scholar 

  • Chilvers B, Corkeron PJ (2001) Trawling and bottlenose dolphins’ social structure. Proc R Soc Lond B 268:1901–1905

    Article  CAS  Google Scholar 

  • Connor RC, Krützen M (2015) Male dolphin alliances in Shark Bay: changing perspectives in a 30-year study. Anim Behav 103:223–235

    Article  Google Scholar 

  • Connor RC, Smolker R, Bejder L (2006) Synchrony, social behaviour and alliance affiliation in Indian Ocean bottlenose dolphins, Tursiops aduncus. Anim Behav 72:1371–1378

    Article  Google Scholar 

  • Coulson T, Albon S, Pilkington J, Clutton-Brock T (1999) Small-scale spatial dynamics in a fluctuating ungulate population. J Anim Ecol 68:658–671

    Article  Google Scholar 

  • Covas R, Griesser M (2007) Life history and the evolution of family living in birds. Proc R Soc Lond B 274:1349–1357

    Article  Google Scholar 

  • Croft DP, James R, Krause J (2010) Exploring animal social networks. Princeton University Press, Princeton

    Google Scholar 

  • Duffield GA, Bull MC (2002) Stable social aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89:424–427

    Article  PubMed  CAS  Google Scholar 

  • Edyvane KS (1999) Coastal and marine wetlands in Gulf St. Vincent, South Australia: understanding their loss and degradation. Wetl Ecol Manag 7:83–104

    Article  Google Scholar 

  • Ellis S, Franks DW, Nattrass S, Cant MA, Weiss MN, Giles D, Balcomb KC, Croft DP (2017) Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance. Proc R Soc B 284:20171313

    Article  PubMed  Google Scholar 

  • Farine DR, Whitehead H (2015) Constructing, conducting and interpreting animal social network analysis. J Anim Ecol 84:1144–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Fieberg J, Kochanny CO, Lanham (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildlife Manage 69:1346–1359

    Article  Google Scholar 

  • Frère CH, Krützen M, Mann J, Watson-Capps JJ, Tsai YJ, Patterson EM, Connor R, Bejder L, Sherwin WB (2010) Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim Behav 80:481–486

    Article  Google Scholar 

  • Ganzhorn JU (1999) Body mass, competition and the structure of primate communities. In: Fleagle JG, Janson C, Reed KE (eds) Primate communities. Cambridge University Press, Cambridge, pp 141–157

    Chapter  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. P Natl Acad Sci USA 99:7821–7826

    Article  CAS  Google Scholar 

  • Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Gowans S, Würsig B, Karczmarski L (2008) The social structure and strategies of delphinids: predictions based on an ecological framework. Adv Mar Biol 53:195–294

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I J Theor Biol 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Hinde RA (1976) Interactions, relationships and social structure. Man 11:1–17

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Irvine AB, Scott MD, Wells RS, Kaufmann JH (1981) Movements and activities of the Atlantic bottlenose dolphin, Tursiops truncatus, near Sarasota, Florida. Fish Bull 79:671–688

    Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Kappeler PM, Barrett L, Blumstein DT, Clutton-Brock TH (2013) Constraints and flexibility in mammalian social behaviour: introduction and synthesis. Phil Trans R Soc B 368:20120337

    Article  PubMed  Google Scholar 

  • Kemper CM, Bossley M, Shaughnessy P (2008) Marine mammals of gulf St Vincent, Investigator Strait and backstairs passage. In: Shepherd S, Bryars S, Kirkegaard I, Harbison P, Jennings J (eds) Natural history of Gulf St Vincent. Royal Society of South Australia Inc., Adelaide, pp 339–352

    Google Scholar 

  • Kemper CM, Tomo I, Bingham J, Bastianello SS, Wang J, Gibbs SE, Woolford L, Dickason C, Kelly D (2016) Morbillivirus-associated unusual mortality event in south Australian bottlenose dolphins is largest reported for the Southern Hemisphere. R Soc open sci 3:60838

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krützen M, Valsecchi E, Connor RC, Sherwin WB (2001) Characterization of microsatellite loci in Tursiops aduncus. Mol Ecol Notes 1:170–172

    Article  Google Scholar 

  • Krützen M, Barré LM, Möller LM, Heithaus MR, Simms C, Sherwin WB (2002) A biopsy system for small cetaceans: darting success and wound healing in Tursiops spp. Mar Mammal Sci 18:863–878

    Article  Google Scholar 

  • Lavery TJ, Butterfield N, Kemper CM, Reid RJ, Sanderson K (2008) Metals and selenium in the liver and bone of three dolphin species from South Australia, 1988–2004. Sci Total Environ 390:77–85

    Article  PubMed  CAS  Google Scholar 

  • Louis M, Gally F, Barbraud C, Béesau J, Tixier P, Simon-Bouhet B, Le Rest K, Guinet C (2015) Social structure and abundance of coastal bottlenose dolphins, Tursiops truncatus, in the Normano-Breton Gulf, English Channel. J Mammal 96:481–493

    Article  Google Scholar 

  • Lusseau D (2005) Residency pattern of bottlenose dolphins Tursiops spp. in Milford Sound, New Zealand, is related to boat traffic. Mar Ecol Prog Ser 295:265–272

    Article  Google Scholar 

  • Lusseau D, Newman M (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271:S477–S481

    Article  Google Scholar 

  • Lusseau D, Wilson B, Hammond P, Grellier K, Durban J, Parsons K, Barton T, Thompson P (2006) Quantifying the influence of sociality on population structure in bottlenose dolphins. J Anim Ecol 75:14–24

    Article  PubMed  Google Scholar 

  • Lusseau D, Whitehead H, Gero S (2008) Incorporating uncertainty into the study of animal social networks. Anim Behav 75:1809–1815

    Article  Google Scholar 

  • MacLeod C (2013) An introduction to using GIS in marine biology. Pictish Beast Publications, Glasgow

    Google Scholar 

  • Mann J, Sargeant B (2003) Like mother, like calf: the ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops sp.). In: Fragaszy D, Perry S (eds) The biology of traditions: models and evidence. Cambridge University Press, Cambridge, pp 236–266

    Chapter  Google Scholar 

  • Michod RE, Sanderson MJ (1985) Behavioral structure and the evolution of cooperation. In: Greenwood PJ, Slatkin M (eds) Evolution: essays in honor of John Maynard Smith. Cambridge University Press, Cambridge, pp 95–104

    Google Scholar 

  • Miller BF, De Young RW, Campbell TA, Laseter BR, Ford WM, Miller KV (2010) Fine-scale genetic and social structuring in a central Appalachian white-tailed deer herd. J Mammal 91:681–689

    Article  Google Scholar 

  • Möller LM (2012) Sociogenetic structure, kin associations and bonding in delphinids. Mol Ecol 21:745–764

    Article  PubMed  Google Scholar 

  • Möller LM, Beheregaray LB, Harcourt RG, Krutzen M (2001) Alliance membership and kinship in wild male bottlenose dolphins (Tursiops aduncus) of southeastern Australia. Proc R Soc Lond B 268:1941–1947

    Article  Google Scholar 

  • Möller LM, Beheregaray LB, Allen SJ, Harcourt RG (2006) Association patterns and kinship in female Indo-Pacific bottlenose dolphins (Tursiops aduncus) of southeastern Australia. Behav Ecol Sociobiol 61:109–117

    Article  Google Scholar 

  • Mourier J, Vercelloni J, Planes S (2012) Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim Behav 83:389–401

    Article  Google Scholar 

  • Nater A, Kopps AM, Krützen M (2009) New polymorphic tetranucleotide microsatellites improve scoring accuracy in the bottlenose dolphin Tursiops aduncus. Mol Ecol Resour 9:531–534

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  CAS  Google Scholar 

  • Perrin WF, Rosel PE, Cipriano F (2013) How to contend with paraphyly in the taxonomy of the delphininae cetaceans? Mar Mammal Sci 29:567–588

    CAS  Google Scholar 

  • Peters KJ, Parra GJ, Skuza PP, Möller LM (2012) First insights into the effects of swim-with-dolphin tourism on the behavior, response, and group structure of southern Australian bottlenose dolphins. Mar Mammal Sci 29:E484–E497

    Google Scholar 

  • Pratt EAL, Beheregaray LB, Bilgmann K, Zanardo N, Diaz-Aguirre F, Möller LM (2018) Hierarchical metapopulation structure in a highly mobile marine predator: the southern Australian coastal bottlenose dolphin (Tursiops cf. australis). Conserv Genet 19:637–654

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Ramos-Fernández G, Boyer D, Gómez VP (2006) A complex social structure with fission–fusion properties can emerge from a simple foraging model. Behav Ecol Sociobiol 60:536–549

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Read AJ, Urian KW, Wilson B, Waples DM (2003) Abundance of bottlenose dolphins in the bays, sounds, and estuaries of North Carolina. Mar Mammal Sci 19:59–073

    Article  Google Scholar 

  • Rooney A, Merritt D, Derr J (1999) Microsatellite diversity in captive bottlenose dolphins (Tursiops truncatus). J Hered 90:228–230

    Article  PubMed  CAS  Google Scholar 

  • Rossbach KA, Herzing DL (1999) Inshore and offshore bottlenose dolphin (Tursiops truncatus) communities distinguished by association patterns near Grand Bahama Island, Bahamas. Can J Zool 77:581–592

    Article  Google Scholar 

  • Rubenstein DI, Wrangham RW (1986) Socioecology: origins and trends. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution. Princeton University Press, Princeton, pp 3–20

    Google Scholar 

  • Rutledge LY, Patterson BR, Mills KJ, Loveless KM, Murray DL, White BN (2010) Protection from harvesting restores the natural social structure of eastern wolf packs. Biol Conserv 143:332–339

    Article  Google Scholar 

  • Sargeant B, Wirsing A, Heithaus M, Mann J (2007) Can environmental heterogeneity explain individual foraging variation in wild bottlenose dolphins (Tursiops sp.)? Behav Ecol Sociobiol 61:679–688

    Article  Google Scholar 

  • Seyfarth RM, Silk JB, Cheney DL (2014) Social bonds in female baboons: the interaction between personality, kinship and rank. Anim Behav 87:23–29

    Article  Google Scholar 

  • Silk JB (2007) The adaptive value of sociality in mammalian groups. Phil Trans R Soc B 362:539–559

    Article  PubMed  Google Scholar 

  • Smith H, Frère C, Kobryn H, Bejder L (2016) Dolphin sociality, distribution and calving as important behavioural patterns informing management. Anim Conserv 19:462–471

    Article  Google Scholar 

  • Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    Article  PubMed  CAS  Google Scholar 

  • Sutherland WJ (1996) From individual behaviour to population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Titcomb EM, O'Corry-Crowe G, Hartel EF, Mazzoil MS (2015) Social communities and spatiotemporal dynamics of association patterns in estuarine bottlenose dolphins. Mar Mammal Sci 31:1314–1337

    Article  Google Scholar 

  • Torres LG, Read AJ (2009) Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Mar Mammal Sci 25:797–815

    Article  Google Scholar 

  • Tyson RB, Nowacek SM, Nowacek DP (2011) Community structure and abundance of bottlenose dolphins Tursiops truncatus in coastal waters of the northeast Gulf of Mexico. Mar Ecol Prog Ser 438:253–265

    Article  Google Scholar 

  • Urian KW, Hohn AA, Hansen LJ (1999) Status of the photo-identification catalog of coastal bottlenose dolphins of the western North Atlantic: Report of a workshop of catalog contributors. NOAA Aministrative Report NMFS-SEFSC-425, U.S. Department of Commerce,. Beaufort, NC

  • Urian KW, Hofmann S, Wells RS, Read AJ (2009) Fine-scale population structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida. Mar Mammal Sci 25:619–638

    Article  Google Scholar 

  • Valsecchi E, Amos W (1996) Microsatellite markers for the study of cetacean populations. Mol Ecol 5:151–156

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • VanderWaal KL, Atwill ER, Isbell L, McCowan B (2014a) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Animal Ecol 83:406–414

    Article  Google Scholar 

  • VanderWaal KL, Wang H, McCowan B, Fushing H, Isbell LA (2014b) Multilevel social organization and space use in reticulated giraffe (Giraffa camelopardalis). Behav Ecol 25:17–26

    Article  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    Article  PubMed  Google Scholar 

  • Weiss J (2006) Foraging habitats and associated preferential foraging specializations of bottlenose dolphin (Tursiops truncatus) mother-calf pairs. Aquat Mamm 32:10–19

    Article  Google Scholar 

  • Whitehead H (1995) Investigating structure and temporal scale in social organizations using identified individuals. Behav Ecol 6:199–208

    Article  Google Scholar 

  • Whitehead H (2008) Analyzing animal societies: quantitative methods for vertebrate social analysis. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Whitehead H (2009) SOCPROG programs: analysing animal social structures. Behav Ecol Sociobiol 63:765–778

    Article  Google Scholar 

  • Whitehead H (2015) SOCPROG: programs for analyzing social structure, version 2.6. Halifax, Nova Scotia, Canada

  • Whitehead H, James R (2015) Generalized affiliation indices extract affiliations from social network data. Methods Ecol Evol 6:836–844

    Article  Google Scholar 

  • Whitehead H, Bejder L, Ottensmeyer CA (2005) Testing association patterns: issues arising and extensions. Anim Behav 69:e1–e6

    Article  Google Scholar 

  • Widdig A, Nürnberg P, Krawczak M, Streich WJ, Bercovitch FB (2001) Paternal relatedness and age proximity regulate social relationships among adult female rhesus macaques. P Natl Acad Sci USA 98:13769–13773

    Article  CAS  Google Scholar 

  • Wiszniewski J, Allen SJ, Möller LM (2009) Social cohesion in a hierarchically structured embayment population of Indo-Pacific bottlenose dolphins. Anim Behav 77:1449–1457

    Article  Google Scholar 

  • Wiszniewski J, Corrigan S, Beheregaray LB, Möller LM (2012) Male reproductive success increases with alliance size in Indo-Pacific bottlenose dolphins (Tursiops aduncus). J Anim Ecol 81:423–431

    Article  PubMed  Google Scholar 

  • Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69:1357–1371

    Article  Google Scholar 

  • Wolf JBW, Trillmich F (2007) Beyond habitat requirements: individual fine-scale site fidelity in a colony of the Galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia 152:553–567

    Article  PubMed  Google Scholar 

  • Wolf JBW, Mawdsley D, Trillmich F, James R (2007) Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim Behav 74:1293–1302

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Würsig B, Jefferson TA (1990) Methods of photo-identification for small cetaceans. Rep Int Whal Comm 12:43–52

    Google Scholar 

  • Zanardo N, Parra GJ, Passadore C, Möller LM (2016) Ensemble modelling of southern Australian bottlenose dolphin Tursiops sp. distribution reveals important habitats and their potential ecological function. Mar Ecol Prog Ser 569:253–266

    Article  Google Scholar 

  • Zanardo N, Parra GJ, Möller LM (2017) Site fidelity, residency, and abundance of bottlenose dolphins (Tursiops sp.) in Adelaide’s coastal waters, South Australia. Mar Mammal Sci 32:1381–1401

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank numerous volunteers who participated in data collection, photo-identification, and biopsy sampling, in particular Kerstin Bilgmann, Shavojn Read, Edward Dyer, and Sasha Whitmarsh. We would also like to thank two anonymous reviewers for their suggestions to the manuscript.

Funding

This project was supported by grants from Flinders University, the Equity Trustees, Nature Foundation South Australia, Field Naturalists Society South Australia, and Biological Society of South Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Zanardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

International, national, and institutional guidelines for the use of animals were followed. Field work was conducted under permits from the Department of Environment, Water and Natural Resources (DEWNR), South Australia, permit #K25761-6, and under Ministerial Exemption from Primary Industries Resources South Australia (PIRSA), exemption #9902648. Ethics approval was obtained from the Flinders University Animal Welfare Committee, project #E375.

Additional information

Communicated by L. Rendell

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanardo, N., Parra, G.J., Diaz-Aguirre, F. et al. Social cohesion and intra-population community structure in southern Australian bottlenose dolphins (Tursiops sp.). Behav Ecol Sociobiol 72, 156 (2018). https://doi.org/10.1007/s00265-018-2557-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2557-8

Keywords

Navigation