Dynamic signalling using cosmetics may explain the reversed sexual dichromatism in the monogamous greater flamingo

Abstract

Colourful plumage is typical of males in species with conventional sex roles, in which females care for offspring and males compete for females, as well as in many monogamous species in which both sexes care for offspring. Reversed sexual dichromatism—more colourful females than males—is predominant in species with sex role reversal. In the latter species, males care for offspring and females compete for mates, the mating system is mainly polyandrous and there is reversed size dimorphism—females are larger than males. Here, we document a case of reversed dichromatism, in the greater flamingo Phoenicopterus roseus, in which there is no sex role reversal and no reversed size dimorphism. Although theoretical models postulate that cases of reversed dichromatism should be rare among monogamous ornamented birds, our findings show that the use of cosmetics might be a mechanism for the occurrence of more ornamented females than males. Indeed, the concentrations of carotenoids in the uropygial secretions used as make-up were higher in females than in males. Apparently, there was a trade-off between coloration and antioxidant defence, as the concentrations of carotenoids in the uropygial secretions were lower during chick provisioning than in other periods, contrary to those in plasma. In this system, the application of make-up would act as a dynamic signal, which would allow a rapid reallocation of resources used for signalling among functions depending on needs. Cases like this may have evolved to signal the ability to provide parental care when females are more physiologically stressed than males.

Significance statement

For species in which there is no sex role reversal, but females are ornamented and the resources allocated to ornaments are important for offspring viability, it has even been suggested that females should be less ornamented than males. This may be because for females, it would be better to invest directly in fecundity rather than in costly ornaments. We show a case of reversed sexual dichromatism in a monogamous bird with no sex role reversal, the greater flamingo, where females apply make-up over feathers. In the case of this species, there could be directional male mate preferences for female plumage coloration because the costs of signalling would not affect breeding investment in females, since cosmetic coloration is not used after it is no longer required, thus allowing the resources used in make-up (carotenoids) to be used in other functions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  2. Amat JA, Rendón MA (2017) Flamingo coloration and its significance. In: Anderson M (ed) Flamingos: behavior, biology, and relationship with man. Nova Scientific Publishers, New York, pp 77–95

    Google Scholar 

  3. Amat JA, Rendón MA, Rendón-Martos M, Garrido A, Ramírez JM (2005) Ranging behaviour of greater flamingos during the breeding and post-breeding periods: linking connectivity to biological processes. Biol Conserv 125:183–192. https://doi.org/10.1016/j.biocon.2005.02.018

    Article  Google Scholar 

  4. Amat JA, Rendón MA, Garrido-Fernández J, Garrido A, Rendón-Martos M, Pérez-Gálvez A (2011) Greater flamingos Phoenicopterus roseus use uropygial secretions as make-up. Behav Ecol Sociobiol 65:665–673. https://doi.org/10.1007/s00265-010-1068-z

    Article  Google Scholar 

  5. Amundsen T, Pärn H (2006) Female coloration: review of functional and non-functional hypotheses. In: Hill GE, McGraw KJ (eds) Bird coloration. Volume II. Function and evolution. Harvard University Press, Cambridge, MS, pp 280–345

  6. Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  7. Botero CA, Rubenstein DR (2012) Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS One 7:e32311. https://doi.org/10.1371/journal.pone.0032311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bowler JM (1994) The condition of Bewick’s swans Cygnus columbianus bewickii in winter as assessed by their abdominal profiles. Ardea 82:241–248

    Google Scholar 

  9. Broughton DR, Schneider BC, McGraw KJ, Ardia DR (2017) Carotenoids buffer the acute phase response on fever, sickness behavior, and rapid bill color change in zebra finches. J Exp Biol (published online, https://doi.org/10.1242/jeb.155069)

  10. Bulluck LP, Foster MJ, Kay S, Cox DE, Viverette C, Huber S (2017) Feather carotenoid content is correlated with reproductive success and provisioning rate in prothonotary warblers. Auk 134:229–239. https://doi.org/10.1642/AUK-16-151.1

    Article  Google Scholar 

  11. Butler MW, Toomey MB, McGraw KJ (2011) How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behav Ecol Sociobiol 65:401–413. https://doi.org/10.1007/s00265-010-1074-1

    Article  Google Scholar 

  12. Cézilly F (1993) Nest desertion in the greater flamingo, Phoenicopterus ruber roseus. Anim Behav 45:1038–1040. https://doi.org/10.1006/anbe.1993.1125

    Article  Google Scholar 

  13. Chenoweth SF, Doughty P, Kokko H (2006) Can non-directional male mating preferences facilitate honest female ornamentation? Ecol Lett 9:179–184. https://doi.org/10.1111/j.1461-0248.2005.00867.x

    Article  PubMed  Google Scholar 

  14. Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885. https://doi.org/10.1126/science.1133311

    Article  PubMed  CAS  Google Scholar 

  15. Clutton-Brock T (2009) Sexual selection in females. Anim Behav 77:3–11. https://doi.org/10.1016/j.anbehav.2008.08.026

    Article  Google Scholar 

  16. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  17. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Google Scholar 

  18. Delhey K, Peters A, Johnsen A, Kempenaers B (2006) Seasonal changes in blue tit crown color: do they signal individual quality? Behav Ecol 17:790–798. https://doi.org/10.1093/beheco/arl012

    Article  Google Scholar 

  19. Delhey K, Peters A, Kempenaers B (2007) Cosmetic coloration in birds: occurrence, function, and evolution. Am Nat 169:S145–S158. https://doi.org/10.1086/510095

    Article  PubMed  Google Scholar 

  20. Dell Inc (2015) STATISTICA (data analysis software system), version 12, www.statsoft.com

  21. Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91. https://doi.org/10.2307/2408316

    Article  PubMed  Google Scholar 

  22. Endler JA, Mielke P (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431. https://doi.org/10.1111/j.1095-8312.2005.00540.x

    Article  Google Scholar 

  23. Faivre B, Grégoire A, Préault M, Cézilly F, Sorci G (2003) Immune activation rapidly mirrored in a secondary sexual trait. Science 300:103. https://doi.org/10.1126/science.1081802

    Article  PubMed  CAS  Google Scholar 

  24. Freeman HD, Valuska AJ, Taylor RR, Ferrie GM, Grand AP, Leighty KA (2016) Plumage variation and social partner choice in the greater flamingo (Phoenicopterus roseus). Zoo Biol 35:409–414. https://doi.org/10.1002/zoo.21321

    Article  PubMed  Google Scholar 

  25. Gladbach A, Gladbach DJ, Kempenaers B, Quillfeldt P (2010) Female-specific colouration, carotenoids and reproductive investment in a dichromatic species, the upland goose Chloephaga picta leucoptera. Behav Ecol Sociobiol 64:1779–1789. https://doi.org/10.1007/s00265-010-0990-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x

    Article  PubMed  CAS  Google Scholar 

  27. Heinsohn R, Legge S, Endler JA (2005) Extreme reversed sexual dichromatism in a bird without sex role reversal. Science 309:617–619. https://doi.org/10.1126/science.1112774

    Article  PubMed  CAS  Google Scholar 

  28. Henschen AE, Whittingham LA, Dunn PA (2016) Oxidative stress is related to both melanin- and carotenoid-based ornaments in the common yellowthroat. Funct Ecol 30:749–758. https://doi.org/10.1111/1365-2435.12549

    Article  Google Scholar 

  29. Hill GE (2002) A red bird in a brown bag: the function and evolution of ornamental plumage coloration in the house finch. Oxford University Press, Oxford

    Google Scholar 

  30. Hill GE (2014) Stress, condition, and ornamentation. Integr Comp Biol 54:533–538. https://doi.org/10.1093/icb/icu086

    Article  PubMed  Google Scholar 

  31. Hodos W (1993) The visual capabilities of birds. In: Zeigler PH, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, Cambridge, MS, pp 63–76

    Google Scholar 

  32. Hutton P, Seymoure BM, McGraw KJ, Ligon RA, Simpson RK (2015) Dynamic color communication. Curr Opin Behav Sci 6:41–49. https://doi.org/10.1016/j.cobeha.2015.08.007

    Article  Google Scholar 

  33. Isaksson C, Andersson S (2008) Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc R Soc Lond B 275:309–314

    Article  CAS  Google Scholar 

  34. Jenni-Eiermann S, Jenni L, Smith S, Constantini D (2014) Oxidative stress in endurance flight: an unconsidered factor in bird migration. PLoS One 9:e95650. https://doi.org/10.1371/journal.pone.0097650

    Article  CAS  Google Scholar 

  35. Johnson A, Cézilly F (2007) The greater flamingo. Poyser, London

    Google Scholar 

  36. Johnson IP, Sibly RM (1993) Pre-breeding behaviour affects condition, assessed by abdominal profile, and hence breeding success of Canada geese Branta canadensis. Wildfowl 44:60–68

    Google Scholar 

  37. Kraaijeveld K (2003) Degree of mutual ornamentation in birds is related to divorce rate. Proc R Soc Lond B 270:1785–1791. https://doi.org/10.1098/rspb.2003.2450

    Article  Google Scholar 

  38. Kraaijeveld K, Kraaijeveld-Smit FLJ, Komdeur J (2007) The evolution of mutual ornamentation. Anim Behav 74:657–677. https://doi.org/10.1016/j.anbehav.2006.12.027

    Article  Google Scholar 

  39. Maia R, White TE (2018) Comparing colors using visual models. Behav Ecol 29:649–659. https://doi.org/10.1093/beheco/ary017

    Article  Google Scholar 

  40. Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD (2013) Pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol 4:609–613. https://doi.org/10.1111/2041-210X.12069

    Article  Google Scholar 

  41. Mair P, Schoenbrodt F, Wilcox R (2017) WRS2: Wilcox robust estimation and testing. R package v 0.9–2, https://cran.r-project.org/web/packages/WRS2

  42. Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  43. McGraw KJ (2006) Mechanisms of carotenoid-based coloration. In: McGraw KJ (ed) Hill GE. Bird coloration.Volume I. Mechanisms and measurements. Harvard University Press, Cambridge, MS, pp 177–242

    Google Scholar 

  44. Montgomerie R (2006) Cosmetic and adventitious colors. In: McGraw KJ (ed) Hill GE. Bird coloration.Volume I. Mechanisms and measurements. Harvard University Press, Cambridge, MS, pp 399–427

    Google Scholar 

  45. Negro JJ, Tella JL, Blanco G, Forero MG, Garrido-Fernández J (2000) Diet explains interpopulation variation of plasma carotenoids and skin pigmentation in nestling white storks. Physiol Biochem Zool 73:97–101. https://doi.org/10.1086/316724

    Article  PubMed  CAS  Google Scholar 

  46. Nordeide JT, Kekäläinen J, Janhunen M, Kortet R (2013) Females ornaments revisted—are they correlated with offspring quality? J Anim Ecol 82:26–38. https://doi.org/10.1111/1365-2656.12021

    Article  PubMed  Google Scholar 

  47. Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–862. https://doi.org/10.1093/molbev/msg108

    Article  PubMed  CAS  Google Scholar 

  48. Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B 263:593–599. https://doi.org/10.1098/rspb.1996.0089

    Article  CAS  Google Scholar 

  49. Pérez-Rodríguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa). Naturwissenschaften 95:821–830. https://doi.org/10.1007/s00114-008-0389-5

    Article  PubMed  CAS  Google Scholar 

  50. Perrot C, Béchet A, Hanzen C, Arnaud A, Pradel R, Cézilly F (2016) Sexual-display complexity varies non-linearly with age and predicts breeding status in greater flamingos. Sci Rep 6:36242. https://doi.org/10.1038/srep36242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Powell DM (1997) Display behaviour and breeding biology of Caribbean flamingos (Phoenicopterus ruber ruber). Anim Keepers Forum 24:395–405

    Google Scholar 

  52. Rendón MA, Garrido A, Ramírez JM, Rendón-Martos M, Amat JA (2001) Despotic establishment of breeding colonies of greater flamingos, Phoenicopterus ruber, in southern Spain. Behav Ecol Sociobiol 50:55–60. https://doi.org/10.1007/s002650100326

    Article  Google Scholar 

  53. Rendón MA, Garrido A, Amat JA, Rendón-Martos M (2009) Monitoring of greater flamingo colonies: some proposals for measuring and interpreting results. Flamingo 1:62–75

    Google Scholar 

  54. Rendón MA, Garrido A, Guerrero JC, Rendón-Martos M, Amat JA (2012) Crop size as an index of chick provisioning in the greater flamingo Phoenicopterus roseus. Ibis 154:379–388. https://doi.org/10.1111/j.1474-919X.2012.01218.x

    Article  Google Scholar 

  55. Rendón MA, Garrido A, Rendón-Martos M, Ramírez JM, Amat JA (2014) Assessing sex-related chick provisioning in greater flamingo Phoenicopterus roseus parents using capture-recapture models. J Anim Ecol 83:479–490. https://doi.org/10.1111/1365-2656.12138

    Article  PubMed  Google Scholar 

  56. Rosenthal MF, Murphy TG, Darling N, Tarvin KA (2012) Ornamental bill color rapidly signals changing condition. J Avian Biol 43:553–564. https://doi.org/10.1111/j.1600-048X.2012.05774.x

    Article  Google Scholar 

  57. Searcy WA, Nowicki S (2005) The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton

    Google Scholar 

  58. Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Google Scholar 

  59. Simons MJP, Cohen AA, Verhulst S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—a meta-analysis. PLoS One 7:e43088. https://doi.org/10.1371/journal.pone.0043088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Studer-Thiersch A (1986) Tarsus length as an indication of sex in the flamingo genus Phoenicopterus. Int Zoo Yearb 24(25):240–243. https://doi.org/10.1111/j.1748-1090.1985.tb02546.x

    Article  Google Scholar 

  61. Svensson PA, Forsgren E, Amundsen T, Nilsson Sköld H (2005) Chromatic interaction between egg pigmentation and skin chromatophores in the nuptial coloration of females two-spotted gobies. J Exp Biol 208:4391–4397. https://doi.org/10.1242/jeb.01925

    Article  PubMed  Google Scholar 

  62. Tavecchia G, Pradel R, Boy V, Johnson AR, Cézilly F (2001) Sex- and age-related variation in survival and cost of first reproduction in greater flamingos. Ecology 82:165–174. https://doi.org/10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2

  63. Tobias JA, Montgomerie R, Lyon B (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil Trans R Soc B 367:2274–2293. https://doi.org/10.1098/rstb.2011.0280

    Article  PubMed  Google Scholar 

  64. Torres R, Velando A (2003) A dynamic trait affects continuous pair assessment in the blue-footed booby, Sula nebouxii. Behav Ecol Sociobiol 55:65–72. https://doi.org/10.1007/s00265-003-0669-1

    Article  Google Scholar 

  65. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer-Verlag New York Inc., New York

    Google Scholar 

  66. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358. https://doi.org/10.1098/rspb.1998.0302

    Article  CAS  Google Scholar 

  67. Vorobyev M, Osorio D, Bennett ATD, Marshall N, Cuthill I (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633. https://doi.org/10.1007/s003590050286

    Article  PubMed  CAS  Google Scholar 

  68. Woodall AA, Lee SW-M, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta 1336:33–42. https://doi.org/10.1016/S0304-4165(97)00006-8

    Article  PubMed  CAS  Google Scholar 

  69. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. https://doi.org/10.1126/science.287.5451.303

    Article  PubMed  CAS  Google Scholar 

  70. Zillich U, Black J (2002) Body mass and abdominal profile index of captive Hawaiian geese. Wildfowl 53:67–77

    Google Scholar 

Download references

Acknowledgments

We thank “Cañada de los Pájaros” for providing facilities. M. I. Adrián, O. González, P. Rodríguez, and M. Vázquez helped to capture flamingos and taking samples. Mónica Gutiérrez, from LEM-EBD, did the molecular sexing. Two anonymous reviewers and the editors commented on an earlier version.

Funding

Funds were received from Ministerio de Educación y Ciencia of Spain with EU-EURF support (research grants BOS2002-04695 and CGL2005-01136/BOS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan A. Amat.

Ethics declarations

Ethical approval

International, national, and institutional guidelines for the use and capture of animals were followed. Consejería de Medio Ambiente from the Junta de Andalucía (Regional Government) gave permission to conduct the study. An approval from an ethics committee was not needed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Fernandez-Juricic

Electronic supplementary material

ESM 1

(PDF 5353 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amat, J.A., Garrido, A., Portavia, F. et al. Dynamic signalling using cosmetics may explain the reversed sexual dichromatism in the monogamous greater flamingo. Behav Ecol Sociobiol 72, 135 (2018). https://doi.org/10.1007/s00265-018-2551-1

Download citation

Keywords

  • Carotenoids
  • Make-up
  • Plumage coloration
  • Plumage maintenance
  • Sexual differences
  • Uropygial secretions