Stridulation can suppress cannibalism in a specialised araneophagous predator

Abstract

Acoustic signalling is widespread in arthropods and appears to be common in spiders, but the function is still unknown in many species. Acoustic signals have several functions and can be used both in interspecific (e.g., to threaten potential predators) and intraspecific (during courtship) communication. In our study, we investigated the intraspecific role of stridulation in the araneophagous Palpimanus spider (Araneae: Palpimanidae). These spiders are specialised in hunting other spiders at all ontogenetic stages. We hypothesised that stridulation is used to avoid cannibalism. We investigated the morphology of the stridulatory apparatus, analysed the acoustic signals that various stages produce, and found two types of stridulation, low- and high-intensity stridulation. Then, we investigated the presence of cannibalism between individuals of variable body size and the use of stridulation during interactions. We found that cannibalism occurred only when the prosoma size difference between the two opponents was more than 200%. Then, we paired conspecific large control Palpimanus with smaller control individual or with individual whose stridulatory organs were impaired and found that impaired spiders suffered significantly higher cannibalism than the control spiders. Our study reveals a novel role of acoustic communication in the conspecific recognition of araneophagous spiders.

Significance statement

Cannibalism is widespread among predatory animals. However, cannibalism might not be an optimal strategy for several reasons and should be a less preferred option for predators. Palpimanus spiders are prey specialised predators preying primarily on other spiders thus the risk of cannibalism is even higher than in generalist predators. These spiders possess stridulatory apparatus and they often stridulate following a contact with conspecifics. We found that cannibalism occasionally occurred during contact with conspecifics and that the probability of cannibalism increased with the size difference between the interacting individuals. When the spiders were not able to stridulate during contact, the probability of cannibalism increased significantly. Our results thus show that Palpimanus spiders use stridulation to reduce cannibalism among unequally sized individuals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alexander AJ (1958) On the stridulation of scorpions. Behaviour 12:339–352

    Article  Google Scholar 

  2. Alexander AJ (1960) A note on the evolution of stridulation within the family Scorpionidae. Proc Zool Soc London 133:391–399

    Article  Google Scholar 

  3. Alexander RD (1967) Acoustical communication in arthropods. Annu Rev Entomol 12:495–526

    Article  Google Scholar 

  4. Barth FG, Schmitt A (1991) Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav Ecol Sociobiol 29:333–339

    Article  Google Scholar 

  5. Belles-Isles JC, Fitzgerald GJ (1993) A fitness advantage of cannibalism in female sticklebacks (Gasterosteus aculeatus L.). Ethol Ecol Evol 5:187–191

    Article  Google Scholar 

  6. Bouwma PE, Herrnkind WF (2009) Sound production in Caribbean spiny lobster Panulirus argus and its role in escape during predatory attack by Octopus briareus. N Z J Mar Freshw Res 43:3–13

    Article  Google Scholar 

  7. Broughton WB (1963) Method in bio-acoustic terminology. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 3–47

    Google Scholar 

  8. Cerveira AM, Jackson RR (2005) Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae). J East Afr Nat Hist 94:303–317

    Article  Google Scholar 

  9. Claridge M (2006) Insect sounds and communication—an introduction. In: Drosopoulos S, Claridge MF (eds) Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution. CRC Press, Boca Raton, pp 3–10

    Google Scholar 

  10. Cloudsley-Thompson JL, Constantinou C (1984) Stridulatory apparatus of Solifugae (Solpugida). J Arid Environ 7:365–369

    Google Scholar 

  11. Dumortier B (1963) Morphology of sound emission apparatus in Arthropoda. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier Pub. Co., Amsterdam, pp 277–345

    Google Scholar 

  12. Dutto MS, Calbacho-Rosa L, Peretti AV (2011) Signaling and sexual conflict: female spiders use stridulation to inform males of sexual receptivity. Ethology 117:1040–1049

    Article  Google Scholar 

  13. Elgar MA (1992) Sexual cannibalism in spiders and other invertebrates. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 129–156

    Google Scholar 

  14. Elias DO, Hebets EA, Hoy RR, Mason AC (2005) Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Anim Behav 69:931–938

    Article  Google Scholar 

  15. Elias DO, Kasumovic MM, Punzalan D, Andrade MC, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fox LR (1975) Cannibalism in natural populations. Annu Rev Ecol Evol Syst 6:87–106

    Article  Google Scholar 

  17. Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Article  Google Scholar 

  18. Guarisco H (1988) Predation of Achaearanea tepidariorum (Araneae, Theridiidae) upon Sphodros fitchi (Araneae, Atypidae). J Arachnol 16:390–391

    Google Scholar 

  19. Guseinov EFO (2006) The prey of a lithophilous crab spider Xysticus loeffleri (Araneae, Thomisidae). J Arachnol 34:37–45

    Article  Google Scholar 

  20. Gwynne DT, Dadour IR (1985) A new mechanism of sound production by courting male jumping spiders (Araneae: Salticidae, Saitis michaelseni Simon). J Zool 207:35–42

    Article  Google Scholar 

  21. Henschel JR, Lubin YD (1997) A test of habitat selection at two spatial scales in a sit-and-wait predator: a web spider in the Namib dunes. J Anim Ecol 66:401–413

    Article  Google Scholar 

  22. Heuts BA, Brunt T (2001) Transitive predatory relationships of spider species (Arachnida, Araneae) in laboratory tests. Behav Process 53:57–64

    Article  Google Scholar 

  23. Hill SA (2007) Sound generation in Mantis religiosa (Mantodea: Mantidae): stridulatory structures and acoustic signal. J Orthoptera Res 16:35–49

    Article  Google Scholar 

  24. Hinton HE, Wilson RS (1970) Stridulatory organs in spiny orb-weaver spiders. J Zool 162:481–484

    Article  Google Scholar 

  25. Hrušková-Martišová M, Pekár S, Gromov A (2008) Analysis of the stridulation in solifuges (Arachnida: Solifugae). J Insect Behav 21:440–449

    Article  Google Scholar 

  26. Huber BA, Eberhard WG (1997) Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Can J Zool 75:905–918

    Article  Google Scholar 

  27. Iida H (2003) Small within-clutch variance in spiderling body size as a mechanism for avoiding sibling cannibalism in the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). Popul Ecol 45:1–6

    Google Scholar 

  28. Jackson RR (1992) Eight-legged tricksters: spiders that specialize at catching other spiders. Bioscience 42:590–598

    Article  Google Scholar 

  29. Jackson RR, Li D, Fijn N, Barrion AT (1998) Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araneophagic spitting spiders (Scytodidae) from the Philippines. J Insect Behav 11:319–342

    Article  Google Scholar 

  30. Jocqué R (2005) Six stridulating organs on one spider (Araneae, Zodariidae): is this the limit? J Arachnol 33:597–603

    Article  Google Scholar 

  31. Johansson F (1996) The influence of cannibalism and prey density on growth in the damselfly Coenagrion hastulatum. Arch Hydrobiol 137:523–535

    Google Scholar 

  32. Jones G (2005) Echolocation. Curr Biol 15:R484–R488

    Article  PubMed  CAS  Google Scholar 

  33. Kirchner WH, Röschard J (1999) Hissing in bumblebees: an interspecific defence signal. Insect Soc 46:239–243

    Article  Google Scholar 

  34. Land MF (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of arachnids. Springer-Verlag, Berlin, pp 53–78

    Google Scholar 

  35. Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  36. Lazzari CR, Manrique G, Schilman PE (2006) Vibratory communication in Triatominae (Heteroptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, pp 297–304

    Google Scholar 

  37. Lee RCP, Nyffeler M, Krelina E, Pennycook BW (1986) Acoustic communication in two spider species of the genus Steatoda (Araneae, Theridiidae). Mitt Schweiz Entomol Ges 59:337–348

    Google Scholar 

  38. Legendre R (1963) L'audition et l'émission de sons chez les aranéides. Ann Biol 11:371–390

    Google Scholar 

  39. Legendre R (1970) Arachnides-Araignées-Archaeidae. Faune Madag 32:1–51

    Google Scholar 

  40. Li D, Jackson RR (1996a) Prey-specific capture behaviour and prey preferences of myrmecophagic and araneophagic jumping spiders (Araneae: Salticidae). Rev Suisse Zool:423–436

  41. Li D, Jackson RR (1996b) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21:245–274

    Article  Google Scholar 

  42. Lourenço WR, Cloudsley-Thompson JL (1995) Stridulatory apparatus and the evolutionary significance of sound production in Rhopalurus species (Scorpiones: Buthidae). J Arid Environ 31:423–429

    Article  Google Scholar 

  43. MacNeil C, Dick JTA, Hatcher MJ, Fielding NJ, Hume KD, Dunn AM (2003) Parasite transmission and cannibalism in an amphipod (Crustacea). Int J Parasitol 33:795–798

    Article  PubMed  Google Scholar 

  44. Maddison WP, Stratton GE (1988) Sound production and associated morphology in male jumping spiders of the Habronattus agilis species group (Araneae, Salticidae). J Arachnol 16:199–211

    Google Scholar 

  45. Manrique G, Schilman PE (2000) Two different vibratory signals in Rhodnius prolixus (Hemiptera: Reduviidae). Acta Trop 77:271–278

    Article  PubMed  CAS  Google Scholar 

  46. Marshall SD, Thoms EM, Uetz GW (1995) Setal entanglement: an undescribed method of stridulation by a neotropical tarantula (Araneae: Theraphosidae). J Zool 235:587–595

    Article  Google Scholar 

  47. Masters WM (1979) Insect disturbance stridulation: its defensive role. Behav Ecol Sociobiol 5:187–200

    Article  Google Scholar 

  48. Oelbermann K, Scheu S (2002) Effects of prey type and mixed diets on survival, growth and development of a generalist predator, Pardosa lugubris (Araneae: Lycosidae). Basic Appl Ecol 3:285–291

    Article  Google Scholar 

  49. Pekár S, Brabec M (2016) Marginal models via GLS: a convenient yet neglected tool for analysis of correlated data in behavioural sciences. Ethology 122:621–631

    Article  Google Scholar 

  50. Pekár S, Brabec M (2018) Marginal models via GEE: a convenient yet neglected tool for analysis of correlated data in behavioural sciences. Ethology 124:86–93

    Article  Google Scholar 

  51. Pekár S, Šobotník J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603

    Article  PubMed  CAS  Google Scholar 

  52. Peretti A, Eberhard WG, Briceño RD (2006) Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Anim Behav 72:413–421

    Article  Google Scholar 

  53. Pérez-Miles F, Oca LMD, Postiglioni R, Costa FG (2005) The stridulatory setae of Acanthoscurria suina (Araneae, Theraphosidae) and their possible role in sexual communication: an experimental approach. Iheringia, Sér Zool 95:365–371

    Article  Google Scholar 

  54. Pfennig DW, Reeve HK, Sherman PW (1993) Kin recognition and cannibalism in spadefoot toad tadpoles. Anim Behav 46:87–94

    Article  Google Scholar 

  55. Pfennig DW, Ho SG, Hoffman EA (1998) Pathogen transmission as a selective force against cannibalism. Anim Behav 55:1255–1261

    Article  PubMed  CAS  Google Scholar 

  56. Pinheiro JC, Bates DM (2000) Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-plus. Springer-Verlag, New York

    Google Scholar 

  57. Pizzatto L, Shine R (2011) You are what you eat: parasite transfer in cannibalistic cane toads. Herpetologica 67:118–123

    Article  Google Scholar 

  58. Platnick NI (1981) A review of the spider subfamily Palpimaninae (Araneae, Palpimanidae). Bull Br Arachnol Soc 5:169–173

    Google Scholar 

  59. Pocock RI (1895) Musical boxes in spiders. Nat Sci 6:44–50

    Google Scholar 

  60. Polidori C, Pavan G, Ruffato G, Asís JD, Tormos J (2013) Common features and species-specific differences in stridulatory organs and stridulation patterns of velvet ants (Hymenoptera: Mutillidae). Zool Anz Comp Zool 252:457–468

    Article  Google Scholar 

  61. Pomini AM, Machado G, Pinto-da-Rocha R, Macías-Ordóñez R, Marsaioli AJ (2010) Lines of defense in the harvestman Hoplobunus mexicanus (Arachnida: Opiliones): aposematism, stridulation, thanatosis, and irritant chemicals. Biochem Syst Ecol 38:300–308

    Article  CAS  Google Scholar 

  62. R Development Core Team (2015) R: a language and environment for statistical computing. In: R foundation for statistical computing. Vienna, Austria

    Google Scholar 

  63. Riechert SE (1978) Games spiders play: behavioral variability in territorial disputes. Behav Ecol Sociobiol 3:135–162

    Article  Google Scholar 

  64. Samu F, Toft S, Kiss B (1999) Factors influencing cannibalism in the wolf spider Pardosa agrestis (Araneae, Lycosidae). Behav Ecol Sociobiol 45:349–354

    Article  Google Scholar 

  65. Schilman PE, Lazzari CR, Manriqueb G (2001) Comparison of disturbance stridulations in five species of triatominae bugs. Acta Trop 79:171–178

    Article  PubMed  CAS  Google Scholar 

  66. Schmidt JM (1994) Encounters between adult spined assassin bugs, Sinea diadema (F.)(Hemiptera: Reduviidae): the occurrence and consequences of stridulation. J Insect Behav 7:811–828

    Article  Google Scholar 

  67. Schmidt JO, Blum MS (1977) Adaptations and responses of Dasymutilla occidentalis (Hymenoptera: Mutillidae) to predators. Entomol Exp Appl 21:99–111

    Article  Google Scholar 

  68. Schmitt A, Schuster M, Barth FG (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90:293–306

    Article  Google Scholar 

  69. Sentenská L, Pekár S (2014) Eat or not to eat: reversed sexual cannibalism as a male foraging strategy in the spider Micaria sociabilis (Araneae: Gnaphosidae). Ethology 120:511–518

    Article  Google Scholar 

  70. Shear WA (1970) Stridulation in Acanthophrynus coronatus (Butler)(Amblypygi, Tarantulidae). Psyche 77:181–183

    Article  Google Scholar 

  71. Starck VJ (1985) Stridulationsapparate einiger Spinnen–Morphologie und evolutionsbiologische Aspekte. J Zool Syst Evol Res 23:115–135

    Article  Google Scholar 

  72. Stratton GE, Uetz GW (1983) Communication via substratum-coupled stridulation and reproductive isolation in wolf spiders (Araneae: Lycosidae). Anim Behav 31:164–172

    Article  Google Scholar 

  73. Sueur J, Aubin T, Simonis C (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226

    Article  Google Scholar 

  74. Surlykke A, Kalko EK (2008) Echolocating bats cry out loud to detect their prey. PLoS One 3:e2036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Suter RB, Keiley M (1984) Agonistic interactions between male Frontinella pyramitela (Araneae, Linyphiidae). Behav Ecol Sociobiol 15:1–7

    Article  Google Scholar 

  76. Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed species diets of different quality. Oecologia 119:191–197

    Article  PubMed  Google Scholar 

  77. Turnbull AL (1973) Ecology of the true spiders (Araneomorphae). Annu Rev Entomol 18:305–348

    Article  Google Scholar 

  78. Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms and ecological significance. Princeton University Press, New Jersey, pp 123–159

    Google Scholar 

  79. Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behavior: flexibility and versatility. Cambridge University Press, Cambridge, pp 127–190

    Google Scholar 

  80. Uhl G, Schmitt M (1996) Stridulation in Palpimanus gibbulus Dufour (Araneae: Palpimanidae). Rev Suisse Zool 2:649–660

    Google Scholar 

  81. Wessel A (2006) Stridulation in the Coleoptera—an overview. In: Drosopoulos S, Claridge MF (eds) Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution. CRC Press, Boca Raton, pp 397–403

    Google Scholar 

  82. Wignall AE, Herberstein ME (2013) Male courtship vibrations delay predatory behaviour in female spiders. Sci Rep 3:3557

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wilder SM, Rypstra AL (2010) Males make poor meals: a comparison of nutrient extraction during sexual cannibalism and predation. Oecologia 162:617–625

    Article  PubMed  Google Scholar 

  84. Wise DH (2006) Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu Rev Entomol 51:441–465

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ladislav Ilkovics from the Department of Histology and Embryology at the Medical Faculty of Masaryk University, for help in taking SEM pictures. We thank Stanislav Korenko for help in collecting spider specimens. We also thank to three anonymous reviewers for their comments.

Author information

Affiliations

Authors

Contributions

SP conceived the study, acquired and analyse data on morphology and stridulation and conducted comparative analysis; EL acquired and analyse behavioural data; LS acquired behavioural data; EL, LS, SP and FŠ collected tested specimens. EL and SP interpreted data and wrote the manuscript. LS and FŠ helped to draft the manuscript. All the authors gave final approval for publication.

Corresponding author

Correspondence to Eva Líznarová.

Ethics declarations

Data availability statement

The datasets generated and analysed during the current study are available in the Terrestrial invertebrate research group repository, http://www.sci.muni.cz/zoolecol/inverteb/?page_id=18.

Additional information

Communicated by J. Pruitt

Electronic supplementary material

ESM 1

(MP4 4329 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Líznarová, E., Sentenská, L., Šťáhlavský, F. et al. Stridulation can suppress cannibalism in a specialised araneophagous predator. Behav Ecol Sociobiol 72, 127 (2018). https://doi.org/10.1007/s00265-018-2541-3

Download citation

Keywords

  • Acoustic signal
  • Araneophagy
  • Defence
  • Intraspecific interaction
  • Predation
  • Spider