Araya-Ajoy YG, Dingemanse NJ (2014) Characterizing behavioural “characters”: an evolutionary framework. Proc R Soc B 281:20132645
Article
PubMed
Google Scholar
Bauwens D, Diaz-Uriarte R (1997) Covariation of life-history traits in Lacertid lizards: a comparative study. Am Nat 149:91–111
Article
Google Scholar
Bielby J, Mace GM, Bininda-Emonds ORP, Cardillo M, Gittleman JL, Jones KE, Orme CD, Purvis A (2007) The fast-slow continuum in mammalian life history: an empirical reevaluation. Am Nat 169:748–757
PubMed
CAS
Google Scholar
Bjørkvoll E, Grøtan V, Aanes S, Sæther B-E, Engen S, Aanes R, Solow AE, Shaw ERG (2012) Stochastic population dynamics and life-history variation in marine fish species. Am Nat 180:372–387
Article
PubMed
Google Scholar
Charlesworth B (1994) Evolution in age-structured populations. Cambridge University Press, Cambridge
Book
Google Scholar
Cody ML (1966) A general theory of clutch size. Evolution 20:174–184
Article
PubMed
Google Scholar
Dammhahn M, Dingemanse NJ, Niemelä PT, Réale D (2018) Pace-of life syndromes: a framework for the adaptive integration of behaviour, physiology and life-history. Behav Ecol Sociobiol, topical collection on Pace-of-life syndrome
Descamps S, Gaillard J-M, Hamel S, Yoccoz NG (2016) When relative allocation depends on total resource acquisition: implications fort the analysis of trade-offs. J Evol Biol 29:1860–1866
Article
PubMed
CAS
Google Scholar
Dingemanse NJ, Dochtermann N (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54
Article
PubMed
Google Scholar
Dingemanse NJ, Dochtermann N, Wright J (2010) A method for exploring the structure of behavioural syndromes to allow formal comparison within and between data sets. Anim Behav 79:439–450
Article
Google Scholar
Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815
Article
Google Scholar
Fry JD (1993) The “general vigor” problem: can antagonistic pleiotropy be detected when genetic covariances are positive? Evolution 47:327–333
PubMed
Google Scholar
Gaillard J-M, Lemantre JF, Berge V, Bonenfant C, Devillard S, Douhard M, Gamelon M, Plard F, Lebreton JD (2016) Life histories, axes of variation. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic Press, Oxford, pp 312–323
Chapter
Google Scholar
Gaillard J-M, Pontier D, Allainé D, Lebreton JD, Trouvilliez J, Clobert J (1989) An analysis of demographic tactics in birds and mammals. Oikos 56:59–76
Article
Google Scholar
Gaillard J-M, Yoccoz NG, Lebreton J-D, Bonenfant C, Devillard S, Loison A, Pontier D, Allaine D (2005) Generation time: a reliable metric to measure life-history variation among mammalian populations. Am Nat 166:119–123
Article
PubMed
Google Scholar
Goodwin NB, Grant A, Perry AL, Dulvy NK, Reynolds JD (2006) Life history correlates of density-dependent recruitment in marine fishes. Can J Fish Aquat Sci 63:494–509
Article
Google Scholar
Grace JB, Anderson TM, Olff H, Scheiner SM (2010) On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87
Article
Google Scholar
Hamel S, Gaillard J-M, Yoccoz NG, Loison A, Bonenfant C, Descamps C (2010) Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations. Ecol Lett 13:915–935
Article
PubMed
Google Scholar
Houle D (1991) Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45:630–648
Article
PubMed
Google Scholar
Jones OR, Gaillard J-M, Tuljapurkar S et al (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol Lett 11:664–673
Article
PubMed
Google Scholar
Kendall B, Wittmann M, Neubert AE, De Angelis ED (2010) A stochastic model for annual reproductive success. Am Nat 175:461–468
Article
PubMed
Google Scholar
Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63:607–615
Article
Google Scholar
Mac Nulty DR, Smith DW, Vucetich JA, Mech LD, Stahler DR, Packer C (2009) Predatory senescence in ageing wolves. Ecol Lett 12:1347–1356
Article
Google Scholar
Mathot K, Frankenhuis W (2018) Models of pace-of-life syndromes (POLS): a systematic review. Behav Ecol Sociobiol, topical collection on Pace-of-life syndrome
Montiglio P-O, Dammhahn M, Dubuc-Messier G, Réale D (2018) The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum. Behav Ecol Sociobiol, topical collection on Pace-of-life syndrome
Oli MK (2004) The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl Ecol 5:449–463
Article
Google Scholar
Oli MK, Dobson FS (2003) The relative importance of life history variables to population growth rate in mammals: Cole’s prediction revisited. Am Nat 161:422–440
Article
PubMed
Google Scholar
Oli MK, Dobson FS, Pfiste AECA, Losos EJB (2005) Generation time, elasticity patterns, and mammalian life histories: a reply to Gaillard et al. Am Nat 166:124–128
Article
Google Scholar
Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool 220:417–437
Article
Google Scholar
Réale D, Garant D, Humphrie MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos T Roy Soc B 365:4051–4063
Article
Google Scholar
Reznick D (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos 44:257–267
Article
Google Scholar
Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425
Article
PubMed
CAS
Google Scholar
Roff DA (1993) Evolution of life histories: theory and analysis. Springer, New York
Google Scholar
Saether B-E (1988) Pattern of covariation between life-history traits of European birds. Nature 331:616–617
Article
PubMed
CAS
Google Scholar
Saether B-E, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653
Article
Google Scholar
Saether B-E, Engen S, Møller AP et al (2004) Life-history variation predicts the effects of demographic stochasticity on avian population dynamics. Am Nat 164:793–802
PubMed
Google Scholar
Saether B-E, Lande R, Engen S et al (2005) Generation time and temporal scaling of bird population dynamics. Nature 436:99–102
Article
PubMed
CAS
Google Scholar
Salguero-Gómez R, Jones OR, Jongejans E, Blomberg SP, Hodgson DJ, Mbeau-Ache C, Zuidema PA, de Kroon H, Buckley YM (2016) Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. P Natl Acad Sci USA 113:230–235
Article
CAS
Google Scholar
Santostefano F, Wilson AJ, Niemelä P, Dingemanse NJ (2017) Behavioral mediators of genetic life history trade-offs: a test of the pace-of-life syndrome hypothesis. Proc R Soc B 284:1864
Article
Google Scholar
Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in mammals. Oikos 41:173–187
Article
Google Scholar
Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268
Article
Google Scholar
Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford
Google Scholar
van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142
Article
Google Scholar
Tarka M, Guenther A, Niemelä, PT, Nakagawa S, Noble DWA (2018) Sex differences in life-history, behavior and physiology along a slow-fast continuum: a meta-analysis. Behav Ecol Sociobiol, topical collection on Pace-of-life syndrome
Wilson AJ, Nussey DH (2009) What is individual quality? An evolutionary perspective. Trends Ecol Evol 25:207–214
Article
PubMed
Google Scholar
Wilson AJ, Réale D, Clements MN, Morrissey MB, Postma E, Walling CA, Kruuk LEB, Nussey DH (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26
Article
PubMed
Google Scholar
Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690
Article
Google Scholar