Skip to main content

Evolution of sex-specific pace-of-life syndromes: causes and consequences

Abstract

Males and females commonly differ in their life history optima and, consequently, in the optimal expression of life history, behavioral and physiological traits involved in pace-of-life syndromes (POLS). Sex differences in mean trait expression typically result if males and females exhibit different fitness optima along the same pace-of-life continuum, but the syndrome structure may also differ for the sexes. Due to sex-specific selective pressures imposed by reproductive roles and breeding strategies, the sexes may come to differ in the strength of correlation among traits, or different traits may covary in males and females. Ignorance of these selective forces operating between and within the sexes may lead to flawed conclusions about POLS manifestation in the species, and stand in the way of understanding the evolution, maintenance, and variability of POLS. We outline ways in which natural and sexual selection influence sex-specific trait evolution, and describe potential ultimate mechanisms underlying sex-specific POLS. We make predictions on how reproductive roles and the underlying sexual conflict lead to sex-specific trait covariances. These predictions lead us to conclude that sexual dimorphism in POLS is expected to be highly prevalent, allow us to assess possible consequences for POLS evolution, and provide guidelines for future studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adler MI, Bonduriansky R (2014) Sexual conflict, life span, and aging. Cold Spring Harb Perspect Biol 6:a017566

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Andersson M (2005) Evolution of classical polyandry: three steps to female emancipation. Ethology 111:1–23

    Article  Google Scholar 

  • Arnold KE, Owens IP (1998) Cooperative breeding in birds: a comparative test of the life history hypothesis. Proc R Soc Lond B 265:739–745

    Article  Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton, NI

    Book  Google Scholar 

  • Arnqvist G, Tuda M (2010) Sexual conflict and the gender load: correlated evolution between population fitness and sexual dimorphism in seed beetles. Proc R Soc Lond B 277:1345–1352

    Article  Google Scholar 

  • Badyaev AV (2005) Stress-induced variation in evolution: from behavioral plasticity to genetic assimilation. Proc R Soc Lond B 272:877–886

    Article  Google Scholar 

  • Ballew NG, Mittelbach GG, Scribner KT (2017) Fitness consequences of boldness in juvenile and adult largemouth bass. Am Nat 189:396–406

    PubMed  Article  Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    PubMed  Article  CAS  Google Scholar 

  • Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, He MX, Dulac C, Hoekstra HE (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434–439

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Berger D, Berg EC, Widegren W, Arnqvist G, Maklakov AA (2014) Multivariate intralocus sexual conflict in seed beetles. Evolution 68:3457–3469

    PubMed  Article  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    PubMed  Article  Google Scholar 

  • Biro PA, Adriaenssens B, Sampson P, Quinn J (2014) Individual and sex-specific differences in intrinsic growth rate covary with consistent individual differences in behaviour. J Anim Ecol 83(5):1186–1195

    PubMed  Article  Google Scholar 

  • Bonduriansky R (2006) The evolution of condition-dependent sexual dimorphism. Am Nat 169:9–19

    PubMed  Google Scholar 

  • Bonduriansky R, Maklakov A, Zajitschek F, Brooks R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 22:443–453

    Article  Google Scholar 

  • Bonnet X (2011) The evolution of semelparity. In: Aldridge RD, Sever DM (eds) Reproductive biology and phylogeny of snakes. CRC Press, Boca Raton, FL, pp 645–672

    Chapter  Google Scholar 

  • Bouwhuis S, Quinn JL, Sheldon BC, Verhulst S (2014) Personality and basal metabolic rate in a wild bird population. Oikos 123:56–62

    Article  Google Scholar 

  • Bradley AJ, McDonald IR, Lee AK (1980) Stress and mortality in a small marsupial (Antechinus stuartii, Macleay). Gen Comp Endocrinol 40:188–200

    PubMed  Article  CAS  Google Scholar 

  • Brommer JE, Kirkpatrick M, Qvarnstrom A, Gustafsson L (2007) The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLoS One 2:e744

    PubMed  PubMed Central  Article  Google Scholar 

  • Burtka JL, Grindstaff JL (2013) Repeatable nest defense behavior in a wild population of eastern bluebirds (Sialia sialis) as evidence of personality. Acta Ethol 16:135–146

    Article  Google Scholar 

  • Cam E, Link WA, Cooch EG, Monnat JY, Danchin E (2002) Individual covariation in life-history traits: seeing the trees despite the forest. Am Nat 159:96–105

    PubMed  Google Scholar 

  • Careau V, Réale D, Humphries MM, Thomas DW (2010) The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs. Am Nat 175:753–758

    PubMed  Article  Google Scholar 

  • Chen HY, Maklakov AA (2014) Condition dependence of male mortality drives the evolution of sex differences in longevity. Curr Biol 24:2423–2427

    PubMed  Article  CAS  Google Scholar 

  • Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Princeton

    Google Scholar 

  • Clutton-Brock TH, Isvaran K (2007) Sex differences in ageing in natural populations of vertebrates. Proc R Soc Lond B 274:3097–3104

    Article  CAS  Google Scholar 

  • Clutton-Brock TH, Vincent ACJ (1991) Sexual selection and the potential reproductive rates of males and females. Nature 351:58–60

    PubMed  Article  CAS  Google Scholar 

  • Connallon T, Clark AG (2012) A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation. Genetics 190:1477–1489

    PubMed  PubMed Central  Article  Google Scholar 

  • Connallon T, Clark AG (2014) Balancing selection in species with separate sexes: insights from Fisher’s geometric model. Genetics 197:991–1006

    PubMed  PubMed Central  Article  Google Scholar 

  • Cook K, McConnachie S, Gilmour K, Hinch S, Cooke S (2011) Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds. Horm Behav 60:489–497

    PubMed  Article  CAS  Google Scholar 

  • Dall SRX, Houston AI, McNamara JM (2004) The behavioral ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739

    Article  Google Scholar 

  • De Lisle SP, Rowe L (2015) Parasitism and the expression of sexual dimorphism. Ecol Evol 5:961–967

    PubMed  PubMed Central  Article  Google Scholar 

  • Debecker S, Sanmartín-Villar I, de Guinea-Luengo M, Cordero-Rivera A, Stoks R (2016) Integrating the pace-of-life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure. J Anim Ecol 85:726–738

    PubMed  Article  Google Scholar 

  • Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54

    PubMed  Article  Google Scholar 

  • Eens M, Pinxten R (2000) Sex-role reversal in vertebrates: behavioral and endocrinological accounts. Behav Process 51:135–147

    Article  CAS  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    PubMed  Article  CAS  Google Scholar 

  • Fisher DO, Blomberg SP (2011) Costs of reproduction and terminal investment by females in a semelparous marsupial. PLoS One 6:e15226

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Fisher DO, Dickman CR, Jones ME, Blomberg SP (2013) Sperm competition drives the evolution of suicidal reproduction in mammals. P Natl Acad Sci USA 110:17910–17914

    Article  Google Scholar 

  • Fresneau N, Kluen E, Brommer JE (2014) A sex-specific behavioral syndrome in a wild passerine. Behav Ecol 25:359–367

    Article  Google Scholar 

  • Fromhage L, Elgar MA, Schneider JM (2005) Faithful without care: the evolution of monogyny. Evolution 59:1400–1405

    PubMed  Article  Google Scholar 

  • Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557

    PubMed  Article  CAS  Google Scholar 

  • Hämäläinen A, Dammhahn M, Aujard F, Eberle M, Hardy I, Kappeler PM, Perret M, Schliehe-Diecks S, Kraus C (2014) Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate. Proc R Soc B 281:20140830

    PubMed  Article  Google Scholar 

  • Hamel S, Gaillard JM, Yoccoz NG, Albon S, Côté SD, Craine JM, Festa-Bianchet M, Garel M, Lee P, Moss C, Nussey DH, Pelletier F, Stien A, Tveraa T (2016) Cohort variation in individual body mass dissipates with age in large herbivores. Ecol Monogr 86:517–543

    Article  Google Scholar 

  • Han CS, Dingemanse NJ (2017) Sex-dependent expression of behavioural genetic architectures and the evolution of sexual dimorphism. Proc R Soc B 284:20171658

    PubMed  Article  Google Scholar 

  • Hau M, Goymann W (2015) Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions. Front Zool 12(Suppl 1):S7

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hendry AP, Berg OK, Quinn TP (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85:499–514

    Article  Google Scholar 

  • Hollander FA, Van Overveld T, Tokka I, Matthysen E (2008) Personality and nest defense in the great tit (Parus major). Ethology 114:405–412

    Article  Google Scholar 

  • Holveck MJ, Riebel K (2010) Low-quality females prefer low-quality males when choosing a mate. Proc R Soc Lond B 277:153–160

    Article  Google Scholar 

  • Huse G (1998) Sex-specific life history strategies in capelin (Mallotus villosus)? Can J Fish Aquat Sci 55:631–638

    Article  Google Scholar 

  • Immonen E, Hämäläinen A, Schuett W, Tarka M (2018) Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2462-1

  • Jenni DA (1974) Evolution of polyandry in birds. Am Zool 14:129–144

    Article  Google Scholar 

  • Jensen H, Steinsland I, Ringsby TH, Saether BE (2008) Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution 62:1275–1293

    PubMed  Article  Google Scholar 

  • Ketterson ED, Nolan V Jr (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    PubMed  Article  Google Scholar 

  • Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658

    PubMed  Article  Google Scholar 

  • Kim S-Y, Velando A (2016) Unsociable juvenile male three-spined sticklebacks grow more attractive. Behav Ecol Sociobiol 70:975–980

    Article  Google Scholar 

  • Klug H, Bonsall MB, Alonzo SH (2013) Sex differences in life history drive evolutionary transitions among maternal, paternal, and bi-parental care. Ecol Evol 3:792–806

    PubMed  PubMed Central  Article  Google Scholar 

  • Kokko H (1998) Should advertising parental care be honest? Proc R Soc Lond B 265:1871–1878

    Article  Google Scholar 

  • Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948

    PubMed  Article  Google Scholar 

  • Krams I, Kivleniece I, Kuusik A, Krama T, Freeberg TM, Mänd R, Vrublevska J, Rantala MJ, Mänd M (2013b) Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol 16:163–172

    Article  Google Scholar 

  • Krams I, Kivleniece I, Kuusik A, Krama T, Mänd R, Rantala MJ, Znotina S, Freeberg TM, Mänd M (2013a) Predation promotes survival of beetles with lower resting metabolic rates. Entomol Exp Appl 148:94–103

    Article  Google Scholar 

  • Krams IA, Vrublevska J, Sepp T, Abolins-Abols M, Rantala MJ, Mierauskas P, Krama T (2014) Sex-specific associations between nest defense, exploration and breathing rate in breeding pied flycatchers. Ethology 120:492–501

    Article  Google Scholar 

  • Krause ET, Krüger O, Schielzeth H (2017) Long-term effects of early nutrition and environmental matching on developmental and personality traits in zebra finches. Anim Behav 128:103–115

    Article  Google Scholar 

  • Lande R (1984) The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet Res 44:309–320

    PubMed  Article  CAS  Google Scholar 

  • Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    PubMed  Article  CAS  Google Scholar 

  • Lehtonen J, Parker GA, Schärer L (2016) Why anisogamy drives ancestral sex roles. Evolution 70:1129–1135

    PubMed  Article  Google Scholar 

  • Lessells CM (2005) Why are males bad for females? Models for the evolution of damaging male mating behavior. Am Nat 165:S46–S63

    PubMed  Article  Google Scholar 

  • Lewis Z, Wedell N, Hunt J (2011) Evidence for strong intralocus sexual conflict in the Indian meal moth, Plodia Interpunctella. Evolution 65:2085–2097

    PubMed  Article  Google Scholar 

  • Liedtke J, Redekop D, Schneider JM, Schuett W (2015) Early environmental conditions shape personality types in a jumping spider. Front Ecol Evol 3:134

    Article  Google Scholar 

  • Liker A, Székely T (2005) Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59:890–897

    PubMed  Article  Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348

    PubMed  Article  Google Scholar 

  • Long TAF, Rice WR (2007) Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proc R Soc Lond B 274:3105–3112

    Article  Google Scholar 

  • Lorch PD, Proulx S, Rowe L, Day T (2003) Condition-dependent sexual selection can accelerate adaptation. Evol Ecol Res 5:867–881

    Google Scholar 

  • Lüpold S, Jin L, Liao W B (2017) Population density and structure drive differential investment in pre-and postmating sexual traits in frogs. Evolution (published online, https://doi.org/10.1111/evo.13246)

  • Lynn SE (2016) Endocrine and neuroendocrine regulation of fathering behavior in birds. Horm Behav 77:237–248

    PubMed  Article  CAS  Google Scholar 

  • Magurran AE, Garcia CM (2000) Sex differences in behavior as an indirect consequence of mating system. J Fish Biol 57:839–857

    Article  Google Scholar 

  • Maklakov AA, Lummaa V (2013) Evolution of sex differences in lifespan and aging: causes and constraints. BioEssays 35:717–724

    PubMed  Article  Google Scholar 

  • Mank JE, Wedell N, Hosken DJ (2013) Polyandry and sex-specific gene expression. Philos Trans R Soc Lond B Biol Sci 368:20120047

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mills SC, Koskela E, Mappes T (2012) Intralocus sexual conflict for fitness: sexually antagonistic alleles for testosterone. Proc R Soc Lond B 279:1889–1895

    Article  Google Scholar 

  • Monceau K, Dechaume-Moncharmont F-X, Moreau J, Lucas C, Capoduro R, Motreuil S, Moret Y (2017) Personality, immune response and reproductive success: an appraisal of the pace-of-life syndrome hypothesis. J Anim Ecol 86:932–942

    PubMed  Article  Google Scholar 

  • Montiglio P-O, Garant D, Bergeron P, Messier GD, Réale D (2014) Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus). J Anim Ecol 83:720–728

    PubMed  Article  Google Scholar 

  • Mutzel A, Dingemanse NJ, Araya-Ajoy YG, Kempenaers B (2013) Parental provisioning behavior plays a key role in linking personality with reproductive success. Proc R Soc B 280:20131019

    PubMed  Article  CAS  Google Scholar 

  • Nicolaus M, Tinbergen JM, Bouwman KM, Michler SPM, Ubels R, Both C, Kempenaers B, Dingemanse NJ (2012) Experimental evidence for adaptive personalities in a wild passerine bird. Proc R Soc Lond B 279:4885–4892

    Article  Google Scholar 

  • Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R (2013) Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 24:935–941

    Article  Google Scholar 

  • Owens IP, Bennett PM (1994) Mortality costs of parental care and sexual dimorphism in birds. Proc R Soc Lond B 257:1–8

    Article  Google Scholar 

  • Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Pärn H, Lindström KM, Sandell M, Amundsen T (2008) Female aggressive response and hormonal correlates—an intrusion experiment in a free-living passerine. Behav Ecol Sociobiol 62:1665–1677

    Article  Google Scholar 

  • Promislow D (1992) Costs of sexual selection in natural populations of mammals. Proc R Soc Lond B 247:203–210

    Article  Google Scholar 

  • Promislow D (2003) Mate choice, sexual conflict, and evolution of senescence. Behav Genet 33:191–201

    PubMed  Article  Google Scholar 

  • Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency of temperament in bighorn ewes and correlates with behavior and life history. Anim Behav 60:589–597

    PubMed  Article  Google Scholar 

  • Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B 365:4051–4063

    Article  Google Scholar 

  • Restif O, Amos W (2010) The evolution of sex-specific immune defenses. Proc R Soc Lond B 277:2247–2255

    Article  Google Scholar 

  • Reynolds JD (2003) Life histories and extinction risk. In: Blackburn TM, Kevin JG (eds) Macroecology: concepts and consequences. 43rd symposium of the British Ecological Society, Vol. 43. Cambridge University Press, Cambridge, pp 195–217

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Roved J, Westerdahl H, Hasselquist D (2016) Sex differences in immune responses: hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav 88:95–105

    PubMed  Article  CAS  Google Scholar 

  • Royauté R, Berdal MA, Garrison CR, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2472-z

  • Royle NJ, Schuett W, Dall SRX (2010) Behavioral consistency and the resolution of sexual conflict. Behav Ecol 21:1125–1130

    Article  Google Scholar 

  • Rubenstein DR, Lovette IJ (2009) Reproductive skew and selection on female ornamentation in social species. Nature 462:786–789

    PubMed  Article  CAS  Google Scholar 

  • Santostefano F, Wilson AJ, Niemelä PT, Dingemanse NJ (2017) Behavioural mediators of genetic life-history trade-offs: a test of the pace-of-life syndrome hypothesis in field crickets. Proc R Soc B 284:20171567

    PubMed  Article  Google Scholar 

  • Schlicht E, Kempenaers B (2013) Effects of social and extra-pair mating on sexual selection in blue tits (Cyanistes caeruleus). Evolution 67:1420–1434

    PubMed  Google Scholar 

  • Schuett W, Dall SRX, Kloesener MH, Baeumer J, Beinlich F, Eggers T (2015) Life-history trade-offs mediate ‘personality’ variation in two colour morphs of the pea aphid, Acyrthosiphon pisum. J Anim Ecol 84:90–101

    PubMed  Article  Google Scholar 

  • Schuett W, Tregenza T, Dall SRX (2010) Sexual selection and animal personality. Biol Rev 85:217–246

    PubMed  Article  Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151

    PubMed  Article  Google Scholar 

  • Schürch R, Heg D (2010) Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behav Ecol 21:588–598

    Article  Google Scholar 

  • Seebacher F, Wilson RS (2006) Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct Ecol 20:1045–1053

    Article  Google Scholar 

  • Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338

    PubMed  Article  CAS  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455

    Article  Google Scholar 

  • Stamps JA (2007) Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol Lett 10:355–363

    PubMed  Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stein LR, Bell AM (2015) Consistent individual differences in paternal behavior: a field study of three-spined stickleback. Behav Ecol Sociobiol 69:227–236

    PubMed  Article  Google Scholar 

  • Suzuki S, Kitamura M, Matsubayashi K (2005) Matriphagy in the hump earwig, Anechura harmandi (Dermaptera: Forficulidae), increases the survival rates of the offspring. J Ethol 23:211–213

    Article  Google Scholar 

  • Tarka M, Guenther A, Niemelä PT, Nakagawa S, Noble DWA (2018) Sex differences in life-history, behavior and physiology along a slow-fast continuum: a meta-analysis. Behav Ecol Sociobiol. (in press)

  • Trivers R (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine de Gruyter, New York, pp 136–179

  • Veiga JP, Moreno J, Cordero PJ, Mínguez E (2001) Territory size and polygyny in the spotless starling: resource-holding potential or social inertia? Can J Zool 79:1951–1956

    Article  Google Scholar 

  • Vinogradov AE (1998) Male reproductive strategy and decreased longevity. Acta Biotheor 46:157–160

    PubMed  Article  CAS  Google Scholar 

  • Wetzel DP, Westneat DF (2014) Parental care syndromes in house sparrows: positive covariance between provisioning and defense linked to parent identity. Ethology 120:249–257

    Article  Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Williams PD, Day T (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 57:1478–1488

    PubMed  Article  Google Scholar 

  • Wingfield JC, Lynn SE, Soma KK (2001) Avoiding the ‘costs’ of testosterone: ecological bases of hormone-behavior interactions. Brain Behav Evol 57:239–251

    PubMed  Article  CAS  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    PubMed  Article  CAS  Google Scholar 

  • Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461

    PubMed  Article  Google Scholar 

  • Wolff JO, Macdonald DW (2004) Promiscuous females protect their offspring. Trends Ecol Evol 19:127–134

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank the guest editors Niels Dingemanse, Melanie Dammhahn, Petri Niemelä, and Denis Réale for organizing the POLS workshops and this Topical Collection, the VW Foundation for funding the workshops, and all workshop participants for fruitful discussions. Insightful feedback from the guest editors, David Fisher, and anonymous reviewers helped improve the paper. We acknowledge financial support from Research Council of Norway (SFF-III 223257) to MT, European Research Council (AdG-294333, grant to Göran Arnqvist) to EI, and the Alberta Biodiversity Conservation Chair to AH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anni Hämäläinen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Dingemanse

This article is a contribution to the Topical Collection Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life-history – Guest Editors: Melanie Dammhahn, Niels J. Dingemanse, Petri T. Niemelä, Denis Réale

Electronic supplementary material

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hämäläinen, A., Immonen, E., Tarka, M. et al. Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav Ecol Sociobiol 72, 50 (2018). https://doi.org/10.1007/s00265-018-2466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2466-x

Keywords

  • Integrated phenotype
  • Life history
  • Mating system
  • Personality
  • POLS
  • Sexual dimorphism