Evolution of sex-specific pace-of-life syndromes: causes and consequences

  • Anni Hämäläinen
  • Elina Immonen
  • Maja Tarka
  • Wiebke Schuett
Part of the following topical collections:
  1. Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life-history


Males and females commonly differ in their life history optima and, consequently, in the optimal expression of life history, behavioral and physiological traits involved in pace-of-life syndromes (POLS). Sex differences in mean trait expression typically result if males and females exhibit different fitness optima along the same pace-of-life continuum, but the syndrome structure may also differ for the sexes. Due to sex-specific selective pressures imposed by reproductive roles and breeding strategies, the sexes may come to differ in the strength of correlation among traits, or different traits may covary in males and females. Ignorance of these selective forces operating between and within the sexes may lead to flawed conclusions about POLS manifestation in the species, and stand in the way of understanding the evolution, maintenance, and variability of POLS. We outline ways in which natural and sexual selection influence sex-specific trait evolution, and describe potential ultimate mechanisms underlying sex-specific POLS. We make predictions on how reproductive roles and the underlying sexual conflict lead to sex-specific trait covariances. These predictions lead us to conclude that sexual dimorphism in POLS is expected to be highly prevalent, allow us to assess possible consequences for POLS evolution, and provide guidelines for future studies.


Integrated phenotype Life history Mating system Personality POLS Sexual dimorphism 



We thank the guest editors Niels Dingemanse, Melanie Dammhahn, Petri Niemelä, and Denis Réale for organizing the POLS workshops and this Topical Collection, the VW Foundation for funding the workshops, and all workshop participants for fruitful discussions. Insightful feedback from the guest editors, David Fisher, and anonymous reviewers helped improve the paper. We acknowledge financial support from Research Council of Norway (SFF-III 223257) to MT, European Research Council (AdG-294333, grant to Göran Arnqvist) to EI, and the Alberta Biodiversity Conservation Chair to AH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

265_2018_2466_MOESM1_ESM.docx (127 kb)
ESM 1 (DOCX 126 kb)


  1. Adler MI, Bonduriansky R (2014) Sexual conflict, life span, and aging. Cold Spring Harb Perspect Biol 6:a017566PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersson M (2005) Evolution of classical polyandry: three steps to female emancipation. Ethology 111:1–23CrossRefGoogle Scholar
  3. Arnold KE, Owens IP (1998) Cooperative breeding in birds: a comparative test of the life history hypothesis. Proc R Soc Lond B 265:739–745CrossRefGoogle Scholar
  4. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton, NICrossRefGoogle Scholar
  5. Arnqvist G, Tuda M (2010) Sexual conflict and the gender load: correlated evolution between population fitness and sexual dimorphism in seed beetles. Proc R Soc Lond B 277:1345–1352CrossRefGoogle Scholar
  6. Badyaev AV (2005) Stress-induced variation in evolution: from behavioral plasticity to genetic assimilation. Proc R Soc Lond B 272:877–886CrossRefGoogle Scholar
  7. Ballew NG, Mittelbach GG, Scribner KT (2017) Fitness consequences of boldness in juvenile and adult largemouth bass. Am Nat 189:396–406PubMedCrossRefGoogle Scholar
  8. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368PubMedCrossRefGoogle Scholar
  9. Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, He MX, Dulac C, Hoekstra HE (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434–439PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berger D, Berg EC, Widegren W, Arnqvist G, Maklakov AA (2014) Multivariate intralocus sexual conflict in seed beetles. Evolution 68:3457–3469PubMedCrossRefGoogle Scholar
  11. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368PubMedCrossRefGoogle Scholar
  12. Biro PA, Adriaenssens B, Sampson P, Quinn J (2014) Individual and sex-specific differences in intrinsic growth rate covary with consistent individual differences in behaviour. J Anim Ecol 83(5):1186–1195PubMedCrossRefGoogle Scholar
  13. Bonduriansky R (2006) The evolution of condition-dependent sexual dimorphism. Am Nat 169:9–19PubMedGoogle Scholar
  14. Bonduriansky R, Maklakov A, Zajitschek F, Brooks R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 22:443–453CrossRefGoogle Scholar
  15. Bonnet X (2011) The evolution of semelparity. In: Aldridge RD, Sever DM (eds) Reproductive biology and phylogeny of snakes. CRC Press, Boca Raton, FL, pp 645–672CrossRefGoogle Scholar
  16. Bouwhuis S, Quinn JL, Sheldon BC, Verhulst S (2014) Personality and basal metabolic rate in a wild bird population. Oikos 123:56–62CrossRefGoogle Scholar
  17. Bradley AJ, McDonald IR, Lee AK (1980) Stress and mortality in a small marsupial (Antechinus stuartii, Macleay). Gen Comp Endocrinol 40:188–200PubMedCrossRefGoogle Scholar
  18. Brommer JE, Kirkpatrick M, Qvarnstrom A, Gustafsson L (2007) The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLoS One 2:e744PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burtka JL, Grindstaff JL (2013) Repeatable nest defense behavior in a wild population of eastern bluebirds (Sialia sialis) as evidence of personality. Acta Ethol 16:135–146CrossRefGoogle Scholar
  20. Cam E, Link WA, Cooch EG, Monnat JY, Danchin E (2002) Individual covariation in life-history traits: seeing the trees despite the forest. Am Nat 159:96–105PubMedGoogle Scholar
  21. Careau V, Réale D, Humphries MM, Thomas DW (2010) The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs. Am Nat 175:753–758PubMedCrossRefGoogle Scholar
  22. Chen HY, Maklakov AA (2014) Condition dependence of male mortality drives the evolution of sex differences in longevity. Curr Biol 24:2423–2427PubMedCrossRefGoogle Scholar
  23. Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, PrincetonGoogle Scholar
  24. Clutton-Brock TH, Isvaran K (2007) Sex differences in ageing in natural populations of vertebrates. Proc R Soc Lond B 274:3097–3104CrossRefGoogle Scholar
  25. Clutton-Brock TH, Vincent ACJ (1991) Sexual selection and the potential reproductive rates of males and females. Nature 351:58–60PubMedCrossRefGoogle Scholar
  26. Connallon T, Clark AG (2012) A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation. Genetics 190:1477–1489PubMedPubMedCentralCrossRefGoogle Scholar
  27. Connallon T, Clark AG (2014) Balancing selection in species with separate sexes: insights from Fisher’s geometric model. Genetics 197:991–1006PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cook K, McConnachie S, Gilmour K, Hinch S, Cooke S (2011) Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds. Horm Behav 60:489–497PubMedCrossRefGoogle Scholar
  29. Dall SRX, Houston AI, McNamara JM (2004) The behavioral ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739CrossRefGoogle Scholar
  30. De Lisle SP, Rowe L (2015) Parasitism and the expression of sexual dimorphism. Ecol Evol 5:961–967PubMedPubMedCentralCrossRefGoogle Scholar
  31. Debecker S, Sanmartín-Villar I, de Guinea-Luengo M, Cordero-Rivera A, Stoks R (2016) Integrating the pace-of-life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure. J Anim Ecol 85:726–738PubMedCrossRefGoogle Scholar
  32. Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54PubMedCrossRefGoogle Scholar
  33. Eens M, Pinxten R (2000) Sex-role reversal in vertebrates: behavioral and endocrinological accounts. Behav Process 51:135–147CrossRefGoogle Scholar
  34. Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223PubMedCrossRefGoogle Scholar
  35. Fisher DO, Blomberg SP (2011) Costs of reproduction and terminal investment by females in a semelparous marsupial. PLoS One 6:e15226PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fisher DO, Dickman CR, Jones ME, Blomberg SP (2013) Sperm competition drives the evolution of suicidal reproduction in mammals. P Natl Acad Sci USA 110:17910–17914CrossRefGoogle Scholar
  37. Fresneau N, Kluen E, Brommer JE (2014) A sex-specific behavioral syndrome in a wild passerine. Behav Ecol 25:359–367CrossRefGoogle Scholar
  38. Fromhage L, Elgar MA, Schneider JM (2005) Faithful without care: the evolution of monogyny. Evolution 59:1400–1405PubMedCrossRefGoogle Scholar
  39. Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557PubMedCrossRefGoogle Scholar
  40. Hämäläinen A, Dammhahn M, Aujard F, Eberle M, Hardy I, Kappeler PM, Perret M, Schliehe-Diecks S, Kraus C (2014) Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate. Proc R Soc B 281:20140830PubMedCrossRefGoogle Scholar
  41. Hamel S, Gaillard JM, Yoccoz NG, Albon S, Côté SD, Craine JM, Festa-Bianchet M, Garel M, Lee P, Moss C, Nussey DH, Pelletier F, Stien A, Tveraa T (2016) Cohort variation in individual body mass dissipates with age in large herbivores. Ecol Monogr 86:517–543CrossRefGoogle Scholar
  42. Han CS, Dingemanse NJ (2017) Sex-dependent expression of behavioural genetic architectures and the evolution of sexual dimorphism. Proc R Soc B 284:20171658PubMedCrossRefGoogle Scholar
  43. Hau M, Goymann W (2015) Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions. Front Zool 12(Suppl 1):S7PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hendry AP, Berg OK, Quinn TP (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85:499–514CrossRefGoogle Scholar
  45. Hollander FA, Van Overveld T, Tokka I, Matthysen E (2008) Personality and nest defense in the great tit (Parus major). Ethology 114:405–412CrossRefGoogle Scholar
  46. Holveck MJ, Riebel K (2010) Low-quality females prefer low-quality males when choosing a mate. Proc R Soc Lond B 277:153–160CrossRefGoogle Scholar
  47. Huse G (1998) Sex-specific life history strategies in capelin (Mallotus villosus)? Can J Fish Aquat Sci 55:631–638CrossRefGoogle Scholar
  48. Immonen E, Hämäläinen A, Schuett W, Tarka M (2018) Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol.
  49. Jenni DA (1974) Evolution of polyandry in birds. Am Zool 14:129–144CrossRefGoogle Scholar
  50. Jensen H, Steinsland I, Ringsby TH, Saether BE (2008) Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution 62:1275–1293PubMedCrossRefGoogle Scholar
  51. Ketterson ED, Nolan V Jr (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25PubMedCrossRefGoogle Scholar
  52. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658PubMedCrossRefGoogle Scholar
  53. Kim S-Y, Velando A (2016) Unsociable juvenile male three-spined sticklebacks grow more attractive. Behav Ecol Sociobiol 70:975–980CrossRefGoogle Scholar
  54. Klug H, Bonsall MB, Alonzo SH (2013) Sex differences in life history drive evolutionary transitions among maternal, paternal, and bi-parental care. Ecol Evol 3:792–806PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kokko H (1998) Should advertising parental care be honest? Proc R Soc Lond B 265:1871–1878CrossRefGoogle Scholar
  56. Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948PubMedCrossRefGoogle Scholar
  57. Krams I, Kivleniece I, Kuusik A, Krama T, Freeberg TM, Mänd R, Vrublevska J, Rantala MJ, Mänd M (2013b) Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol 16:163–172CrossRefGoogle Scholar
  58. Krams I, Kivleniece I, Kuusik A, Krama T, Mänd R, Rantala MJ, Znotina S, Freeberg TM, Mänd M (2013a) Predation promotes survival of beetles with lower resting metabolic rates. Entomol Exp Appl 148:94–103CrossRefGoogle Scholar
  59. Krams IA, Vrublevska J, Sepp T, Abolins-Abols M, Rantala MJ, Mierauskas P, Krama T (2014) Sex-specific associations between nest defense, exploration and breathing rate in breeding pied flycatchers. Ethology 120:492–501CrossRefGoogle Scholar
  60. Krause ET, Krüger O, Schielzeth H (2017) Long-term effects of early nutrition and environmental matching on developmental and personality traits in zebra finches. Anim Behav 128:103–115CrossRefGoogle Scholar
  61. Lande R (1984) The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet Res 44:309–320PubMedCrossRefGoogle Scholar
  62. Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015PubMedCrossRefGoogle Scholar
  63. Lehtonen J, Parker GA, Schärer L (2016) Why anisogamy drives ancestral sex roles. Evolution 70:1129–1135PubMedCrossRefGoogle Scholar
  64. Lessells CM (2005) Why are males bad for females? Models for the evolution of damaging male mating behavior. Am Nat 165:S46–S63PubMedCrossRefGoogle Scholar
  65. Lewis Z, Wedell N, Hunt J (2011) Evidence for strong intralocus sexual conflict in the Indian meal moth, Plodia Interpunctella. Evolution 65:2085–2097PubMedCrossRefGoogle Scholar
  66. Liedtke J, Redekop D, Schneider JM, Schuett W (2015) Early environmental conditions shape personality types in a jumping spider. Front Ecol Evol 3:134CrossRefGoogle Scholar
  67. Liker A, Székely T (2005) Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59:890–897PubMedCrossRefGoogle Scholar
  68. Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348PubMedCrossRefGoogle Scholar
  69. Long TAF, Rice WR (2007) Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proc R Soc Lond B 274:3105–3112CrossRefGoogle Scholar
  70. Lorch PD, Proulx S, Rowe L, Day T (2003) Condition-dependent sexual selection can accelerate adaptation. Evol Ecol Res 5:867–881Google Scholar
  71. Lüpold S, Jin L, Liao W B (2017) Population density and structure drive differential investment in pre-and postmating sexual traits in frogs. Evolution (published online,
  72. Lynn SE (2016) Endocrine and neuroendocrine regulation of fathering behavior in birds. Horm Behav 77:237–248PubMedCrossRefGoogle Scholar
  73. Magurran AE, Garcia CM (2000) Sex differences in behavior as an indirect consequence of mating system. J Fish Biol 57:839–857CrossRefGoogle Scholar
  74. Maklakov AA, Lummaa V (2013) Evolution of sex differences in lifespan and aging: causes and constraints. BioEssays 35:717–724PubMedCrossRefGoogle Scholar
  75. Mank JE, Wedell N, Hosken DJ (2013) Polyandry and sex-specific gene expression. Philos Trans R Soc Lond B Biol Sci 368:20120047PubMedPubMedCentralCrossRefGoogle Scholar
  76. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  77. Mills SC, Koskela E, Mappes T (2012) Intralocus sexual conflict for fitness: sexually antagonistic alleles for testosterone. Proc R Soc Lond B 279:1889–1895CrossRefGoogle Scholar
  78. Monceau K, Dechaume-Moncharmont F-X, Moreau J, Lucas C, Capoduro R, Motreuil S, Moret Y (2017) Personality, immune response and reproductive success: an appraisal of the pace-of-life syndrome hypothesis. J Anim Ecol 86:932–942PubMedCrossRefGoogle Scholar
  79. Montiglio P-O, Garant D, Bergeron P, Messier GD, Réale D (2014) Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus). J Anim Ecol 83:720–728PubMedCrossRefGoogle Scholar
  80. Mutzel A, Dingemanse NJ, Araya-Ajoy YG, Kempenaers B (2013) Parental provisioning behavior plays a key role in linking personality with reproductive success. Proc R Soc B 280:20131019PubMedCrossRefGoogle Scholar
  81. Nicolaus M, Tinbergen JM, Bouwman KM, Michler SPM, Ubels R, Both C, Kempenaers B, Dingemanse NJ (2012) Experimental evidence for adaptive personalities in a wild passerine bird. Proc R Soc Lond B 279:4885–4892CrossRefGoogle Scholar
  82. Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R (2013) Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 24:935–941CrossRefGoogle Scholar
  83. Owens IP, Bennett PM (1994) Mortality costs of parental care and sexual dimorphism in birds. Proc R Soc Lond B 257:1–8CrossRefGoogle Scholar
  84. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pärn H, Lindström KM, Sandell M, Amundsen T (2008) Female aggressive response and hormonal correlates—an intrusion experiment in a free-living passerine. Behav Ecol Sociobiol 62:1665–1677CrossRefGoogle Scholar
  86. Promislow D (1992) Costs of sexual selection in natural populations of mammals. Proc R Soc Lond B 247:203–210CrossRefGoogle Scholar
  87. Promislow D (2003) Mate choice, sexual conflict, and evolution of senescence. Behav Genet 33:191–201PubMedCrossRefGoogle Scholar
  88. Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency of temperament in bighorn ewes and correlates with behavior and life history. Anim Behav 60:589–597PubMedCrossRefGoogle Scholar
  89. Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B 365:4051–4063CrossRefGoogle Scholar
  90. Restif O, Amos W (2010) The evolution of sex-specific immune defenses. Proc R Soc Lond B 277:2247–2255CrossRefGoogle Scholar
  91. Reynolds JD (2003) Life histories and extinction risk. In: Blackburn TM, Kevin JG (eds) Macroecology: concepts and consequences. 43rd symposium of the British Ecological Society, Vol. 43. Cambridge University Press, Cambridge, pp 195–217Google Scholar
  92. Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468CrossRefGoogle Scholar
  93. Roved J, Westerdahl H, Hasselquist D (2016) Sex differences in immune responses: hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav 88:95–105PubMedCrossRefGoogle Scholar
  94. Royauté R, Berdal MA, Garrison CR, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behav Ecol Sociobiol.
  95. Royle NJ, Schuett W, Dall SRX (2010) Behavioral consistency and the resolution of sexual conflict. Behav Ecol 21:1125–1130CrossRefGoogle Scholar
  96. Rubenstein DR, Lovette IJ (2009) Reproductive skew and selection on female ornamentation in social species. Nature 462:786–789PubMedCrossRefGoogle Scholar
  97. Santostefano F, Wilson AJ, Niemelä PT, Dingemanse NJ (2017) Behavioural mediators of genetic life-history trade-offs: a test of the pace-of-life syndrome hypothesis in field crickets. Proc R Soc B 284:20171567PubMedCrossRefGoogle Scholar
  98. Schlicht E, Kempenaers B (2013) Effects of social and extra-pair mating on sexual selection in blue tits (Cyanistes caeruleus). Evolution 67:1420–1434PubMedGoogle Scholar
  99. Schuett W, Dall SRX, Kloesener MH, Baeumer J, Beinlich F, Eggers T (2015) Life-history trade-offs mediate ‘personality’ variation in two colour morphs of the pea aphid, Acyrthosiphon pisum. J Anim Ecol 84:90–101PubMedCrossRefGoogle Scholar
  100. Schuett W, Tregenza T, Dall SRX (2010) Sexual selection and animal personality. Biol Rev 85:217–246PubMedCrossRefGoogle Scholar
  101. Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151PubMedCrossRefGoogle Scholar
  102. Schürch R, Heg D (2010) Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behav Ecol 21:588–598CrossRefGoogle Scholar
  103. Seebacher F, Wilson RS (2006) Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct Ecol 20:1045–1053CrossRefGoogle Scholar
  104. Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338PubMedCrossRefGoogle Scholar
  105. Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455CrossRefGoogle Scholar
  106. Stamps JA (2007) Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol Lett 10:355–363PubMedCrossRefGoogle Scholar
  107. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268CrossRefGoogle Scholar
  108. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  109. Stein LR, Bell AM (2015) Consistent individual differences in paternal behavior: a field study of three-spined stickleback. Behav Ecol Sociobiol 69:227–236PubMedCrossRefGoogle Scholar
  110. Suzuki S, Kitamura M, Matsubayashi K (2005) Matriphagy in the hump earwig, Anechura harmandi (Dermaptera: Forficulidae), increases the survival rates of the offspring. J Ethol 23:211–213CrossRefGoogle Scholar
  111. Tarka M, Guenther A, Niemelä PT, Nakagawa S, Noble DWA (2018) Sex differences in life-history, behavior and physiology along a slow-fast continuum: a meta-analysis. Behav Ecol Sociobiol. (in press)Google Scholar
  112. Trivers R (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine de Gruyter, New York, pp 136–179Google Scholar
  113. Veiga JP, Moreno J, Cordero PJ, Mínguez E (2001) Territory size and polygyny in the spotless starling: resource-holding potential or social inertia? Can J Zool 79:1951–1956CrossRefGoogle Scholar
  114. Vinogradov AE (1998) Male reproductive strategy and decreased longevity. Acta Biotheor 46:157–160PubMedCrossRefGoogle Scholar
  115. Wetzel DP, Westneat DF (2014) Parental care syndromes in house sparrows: positive covariance between provisioning and defense linked to parent identity. Ethology 120:249–257CrossRefGoogle Scholar
  116. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  117. Williams PD, Day T (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 57:1478–1488PubMedCrossRefGoogle Scholar
  118. Wingfield JC, Lynn SE, Soma KK (2001) Avoiding the ‘costs’ of testosterone: ecological bases of hormone-behavior interactions. Brain Behav Evol 57:239–251PubMedCrossRefGoogle Scholar
  119. Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584PubMedCrossRefGoogle Scholar
  120. Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461PubMedCrossRefGoogle Scholar
  121. Wolff JO, Macdonald DW (2004) Promiscuous females protect their offspring. Trends Ecol Evol 19:127–134PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  3. 3.Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
  4. 4.Zoological InstituteUniversity of HamburgHamburgGermany

Personalised recommendations