Under pressure: human adolescents express a pace-of-life syndrome

Abstract

The pace-of-life syndrome (POLS) hypothesis posits that life-history characteristics, among individual differences in behavior, and physiological traits have coevolved in response to environmental conditions. This hypothesis has generated much research interest because it provides testable predictions concerning the association between the slow-fast life-history continuum and behavioral and physiological traits. Although humans are among the most well-studied species and similar concepts exist in the human literature, the POLS hypothesis has not yet been directly applied to humans. Therefore, we aimed to (i) test predicted relationships between life history, physiology, and behavior in a human population and (ii) better integrate the POLS hypothesis with other similar concepts. Using data of a representative sample of German adolescents, we extracted maturation status for girls (menarche, n = 791) and boys (voice break, n = 486), and a set of health-related risk-taking behaviors and cardiovascular parameters. Maturation status and health-related risk behavior as well as maturation status and cardiovascular physiology covaried in boys and girls. Fast maturing boys and girls had higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing boys and girls, supporting general predictions of the POLS hypothesis. Only some physiological and behavioral traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently. Moreover, some aspects of POLS were sex-specific. Overall, the POLS hypothesis shares many similarities with other conceptual frameworks from the human literature and these concepts should be united more thoroughly to stimulate the study of POLS in humans and other animals.

Significance statement

The pace-of-life syndrome (POLS) hypothesis suggests that life history, behavioral and physiological traits have coevolved in response to environmental conditions. Here, we tested this link in a representative sample of German adolescents, using data from a large health survey (the KIGGs study) containing information on individual age and state of maturity for girls and boys, and a set of health-related risk-taking behaviors and cardiovascular parameters. We found that fast maturing girls and boys had overall higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing girls and boys. Only some behavioral and physiological traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently and not necessarily form a syndrome. Our results demonstrate a general link between life history, physiological and behavioral traits in humans, while simultaneously highlighting a more complex and rich set of relationships, since not all relationships followed predictions by the POLS hypothesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvergne A, Jokela M, Lummaa V (2010) Personality and reproductive success in a high-fertility human population. Proc Natl Acad Sci USA 107:11745–11750

    Article  PubMed  Google Scholar 

  2. Belsky J (2012) The development of human reproductive strategies: progress and prospects. Curr Dir Psychol Sci 21:310–316

    Article  Google Scholar 

  3. Belsky J, Steinberg L, Draper P (1991) Childhood experience, interpersonal development, and reproductive strategy: an evolutionary theory of socialization. Child Dev 62:647–670

    Article  PubMed  CAS  Google Scholar 

  4. Bogin B (1999) Patterns of human growth. Cambridge University Press, Cambridge

    Google Scholar 

  5. Brener ND, Kann L, McManus T, Kinchen SA, Sundberg EC, Ross JG (2002) Reliability of the 1999 youth risk behavior survey questionnaire. J Adolesc Health 31:336–342

    Article  PubMed  Google Scholar 

  6. Brumbach BH, Figueredo AJ, Ellis BJ (2009) Effects of harsh and unpredictable environments in adolescence on development of life history strategies. Hum Nat 20:25–51

    Article  PubMed  PubMed Central  Google Scholar 

  7. Careau V, Garland T (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 85:543–571

    Article  PubMed  Google Scholar 

  8. Careau V, Thomas D, Humphries M, Réale D (2008) Energy metabolism and animal personality. Oikos 117:641–653

    Article  Google Scholar 

  9. Chen X, Wang Y, Mi J (2007) Tracking of blood pressure from childhood to adulthood: a systematic review and meta-analysis. FASEB J 21:A1363

    Google Scholar 

  10. Cho SD, Mueller WH, Meininger JC, Liehr P, Chan W (2001) Blood pressure and sexual maturity in adolescents: the heartfelt study. Am J Hum Biol 13:227–234

    Article  PubMed  CAS  Google Scholar 

  11. Croll J, Neumark-Sztainer D, Story M, Ireland M (2002) Prevalence and risk and protective factors related to disordered eating behaviors among adolescents: relationship to gender and ethnicity. J Adolescent Health 31:166–175

    Article  Google Scholar 

  12. Dammhahn M, Dingemanse NJ, Niemelä P, Réale D (2018) Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life-history. Behav Ecol Sociobiol. (in press)

  13. Del Giudice M, Belsky J (2011) The development of life history strategies: toward a multi-stage theory. In: Buss DM, Hawley PH (eds) The evolution of personality and individual differences. Oxford University Press, Oxford, pp 154–176

    Google Scholar 

  14. Del Giudice M, Ellis BJ, Shirtcliff EA (2011) The adaptive calibration model of stress responsivity. Neurosci Biobehav Rev 35:1562–1592

    Article  PubMed  Google Scholar 

  15. Development Core Team R (2014) R: a language and environment for statistical computing. The R Foundation for Statistical Computing. Austria, Vienna http://www.R-project.org

    Google Scholar 

  16. Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012) Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J Anim Ecol 81:116–126

    Article  PubMed  Google Scholar 

  17. Dreyfus J, Jacobs DR, Mueller N, Schreiner PJ, Moran A, Carnethon MR, Demerath EW (2015) Age at menarche and cardiometabolic risk in adulthood: the coronary artery risk development in young adults study. J Pediatr 167:344–352

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ellis L (1988) Criminal behavior and r/K selection: an extension of gene-based evolutionary theory. Pers Individ Differ 9:697–708

    Article  Google Scholar 

  19. Ellis BJ, Jackson JJ, Boyce WT (2006) The stress response systems: universality and adaptive individual differences. Dev Rev 26:175–212

    Article  Google Scholar 

  20. Ellis BJ, Figueredo AJ, Brumbach BH, Schlomer GL (2009) Fundamental dimensions of environmental risk. Hum Nat 20:204–268

    Article  PubMed  Google Scholar 

  21. Ellis BJ, Shirtcliff EA, Boyce WT, Deardorff J, Essex MJ (2011) Quality of early family relationships and the timing and tempo of puberty: effects depend on biological sensitivity to context. Dev Psychopathol 23:85–99

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ellis BJ, Del Giudice M, Dishion TJ et al (2012) The evolutionary basis of risky adolescent behavior: implications for science, policy, and practice. Dev Psychol 48:598–623

    Article  PubMed  Google Scholar 

  23. Ellis BJ, Del Giudice M, Shirtcliff EA (2017) The adaptive calibration model of stress responsitivity: concepts, findings, and implications for developmental psychopathology. In: Beauchaine TP, Hinshaw SP (eds) Child and adolescent psychopathology, 3rd edn. Wiley & Sons, New York, pp 237–276

    Google Scholar 

  24. Eveleth PB, Tanner JM (1990) Worldwide variation in human growth. Cambridge University Press, Cambridge

    Google Scholar 

  25. Fabrigar LR, Wegener DT, MacCallum RC, Strahan EJ (1999) Evaluating the use of exploratory factor analysis in psychological research. Psychol Methods 4:272–299

    Article  Google Scholar 

  26. Fan Y, Chen J, Shirkey G, John R, Wu SR, Park H, Shao C (2016) Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol Process 5:19–31

    Article  Google Scholar 

  27. Figueredo AJ, Rushton JP (2009) Evidence for shared genetic dominance between the general factor of personality, mental and physical health, and life history traits. Twin Res Hum Genet 12:555–563

    Article  PubMed  Google Scholar 

  28. Figueredo AJ, Vasquez G, Brumbach BH, Schneider SM (2004) The heritability of life history strategy: the k-factor, covitality, and personality. Soc Biol 51:121–143

    PubMed  Google Scholar 

  29. Figueredo AJ, Sefcek JA, Vasquez G, Brumbach BH, King JE, Jacobs WJ (2005) Evolutionary personality psychology. In: Buss DM (ed) The handbook of evolutionary psychology. John Wiley, Hoboken, pp 851–877

  30. Figueredo AJ, Vásquez G, Brumbach BH, Stephanie M, Schneider R (2007) The k-factor, covitality, and personality. Hum Nat 18:47–73

    Article  PubMed  Google Scholar 

  31. Figueredo AJ, de Baca TC, Woodley MA (2013) The measurement of human life history strategy. Pers Individ Differ 55:251–255

    Article  Google Scholar 

  32. Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

    Article  PubMed  CAS  Google Scholar 

  33. Graziano P, Derefinko K (2013) Cardiac vagal control and children's adaptive functioning: a meta-analysis. Biol Psychol 94:22–37

    Article  PubMed  PubMed Central  Google Scholar 

  34. Griskevicius V, Tybur JM, Delton AW, Robertson TE (2011) The influence of mortality and socioeconomic status on risk and delayed rewards: a life history theory approach. J Pers Soc Psychol 100:1015–1026

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hämäläinen A, Immonen E, Tarka M, Schütt W (2018) Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2466-x

    PubMed  Article  PubMed Central  Google Scholar 

  36. Harries M, Walker JM, Williams DM, Hawkins S, Hughes I (1997) Changes in the male voice at puberty. Arch Dis Child 77:445–447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Hill K, Kaplan H (1999) Life history traits in humans: theory and empirical studies. Annu Rev Anthropol 28:397–430

    Article  PubMed  CAS  Google Scholar 

  38. Hölling H, Kamtsiuris P, Lange M, Thierfelder W, Thamm M, Schlack R (2007) The German health interview and examination survey for children and adolescents (KiGGS): study management and conduct of fieldwork. Bundesgesundheitsbla 50:557–566

    Article  Google Scholar 

  39. Hölling H, Schlack R, Kamtsiuris P, Butschalowsky H, Schlaud M, Kurth BM (2012) The KiGGS study. Nationwide representative longitudinal and cross-sectional study on the health of children and adolescents within the framework of health monitoring at the Robert Koch Institute. Bundesgesundheitsbla 55:836–842

    Article  Google Scholar 

  40. Höpker T, Lampert T, Spallek J (2014) Identification and characterisation of health behaviours in 11- to 17-year-old adolescents: a cluster analysis based on the German health interview and examination survey for children and adolescents. Gesundheitswesen 76:453–461

    Article  PubMed  Google Scholar 

  41. Hoyle RH (1995) Structural equation modeling: concepts, issues, and applications. Sage, Thousand Oaks

    Google Scholar 

  42. Huisman H, Schutte A, Van Rooyen J, Malan N, Malan L, Schutte R, Kruger A (2006) The influence of testosterone on blood pressure and risk factors for cardiovascular disease in a black South African population. Ethnic Dis 16:693–698

    CAS  Google Scholar 

  43. Immonen E, Hämäläinen A, Schütt W, Tarka M (2018) Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2462-1

  44. Jelenkovic A, Rebato E (2016) Association of maternal menarcheal age with anthropometric dimensions and blood pressure in children from Greater Bilbao. Ann Hum Biol 43:430–437

    Article  PubMed  Google Scholar 

  45. Jokela M, Kivimäki M, Elovainio M, Keltikangas-Järvinen L (2009) Personality and having children: a two-way relationship. J Pers Soc Psychol 96:218–230

    Article  PubMed  Google Scholar 

  46. Jokela M, Alvergne A, Pollet TV, Lummaa V (2011) Reproductive behavior and personality traits of the five factor model. Eur J Pers 25:487–500

    Article  Google Scholar 

  47. Juul A, Magnusdottir S, Scheike T, Prytz S, Skakkebæk NE (2007) Age at voice break in Danish boys: effects of pre-pubertal body mass index and secular trend. Int J Androl 30:537–542

    Article  PubMed  Google Scholar 

  48. Kamtsiuris P, Lange M, Rosario AS (2007) Der Kinder- und Jugendgesundheitssurvey (KiGGS): Stichprobendesign, Response und Nonresponse-Analyse. Bundesgesundheitsbla 50:547–556

    Article  CAS  Google Scholar 

  49. Kann L, McManus T, Harris WA et al (2016) Youth risk behavior surveillance—United States, 2015. MMWR Surveill Summ 65:1–174

    PubMed  Google Scholar 

  50. Kaplan H, Hill K, Lancaster J, Hurtado AM (2000) A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthropol 9:156–185

    Article  Google Scholar 

  51. Kline RB (2011) Principles and practice of structural equation modeling. The Guilford Press, New York

    Google Scholar 

  52. Koelsch S, Enge J, Jentschke S (2012) Cardiac signatures of personality. PLoS One 7:e31441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Koolhaas J, Korte S, de Boer S, van der Vegt B, van Reenen C, Hopster H, de Jong I, Ruis M, Blokhuis H (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935

    Article  PubMed  CAS  Google Scholar 

  54. Koolhaas J, de Boer S, Coppens C, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–321

    Article  PubMed  CAS  Google Scholar 

  55. Korkmaz S, Goksuluk D, Zararsiz G (2014) MVN: an R package for assessing multivariate normality. R J 6:151–162

    Google Scholar 

  56. Kurth B-M, Kamtsiuris P, Hölling H, Schlaud M, Dölle R, Ellert U, Kahl H, Knopf H, Lange M, Mensink GB (2008) The challenge of comprehensively mapping children’s health in a nation-wide health survey: design of the German KiGGS-study. BMC Public Health 8:196

    Article  PubMed  PubMed Central  Google Scholar 

  57. Linting M, van der Kooij A (2012) Nonlinear principal components analysis with CATPCA: a tutorial. J Pers Assess 94:12–25

    Article  PubMed  Google Scholar 

  58. Linting M, Meulman JJ, Groenen PJ, van der Koojj AJ (2007) Nonlinear principal components analysis: introduction and application. Psychol Methods 12:336–358

    Article  PubMed  Google Scholar 

  59. MacArthur RH (1962) Some generalized theorems of natural selection. Proc Natl Acad Sci USA 48:1893–1897

    Article  PubMed  CAS  Google Scholar 

  60. MacArthur RH, Wilson EO (2015) Theory of island biogeography (MPB-1), vol. 1. Princeton University Press, Princeton

    Google Scholar 

  61. Mardia KV (1970) Measures of multivariate skewnees and kurtosis with applications. Biometrika 57:519–530

    Article  Google Scholar 

  62. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Mathot KJ, Dingemanse NJ (2015) Energetics and behavior: unrequited needs and new directions. Trends Ecol Evol 30:199–206

    Article  PubMed  Google Scholar 

  64. Mathot KJ, Frankenhuis WE (2018) Models of pace-of-life syndromes (POLS): a systematic review. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2459-9

    Article  Google Scholar 

  65. Montiglio P-O, Dammhahn M, Dubuc-Messier G, Réale D (2018) The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum. Behav Ecol Sociobiol. (in press)

  66. Najman JM, Hayatbakhsh MR, McGee TR, Bor W, O'Callaghan MJ, Williams GM (2009) The impact of puberty on aggression/delinquency: adolescence to young adulthood. Aust N Z J Criminol 42:369–386

    Article  Google Scholar 

  67. National Research Council (2011) The science of adolescent risk-taking: workshop report. National Academies Press, Washington, DC

    Google Scholar 

  68. Nettle D (2005) An evolutionary approach to the extraversion continuum. Evol Hum Behav 26:363–373

    Article  Google Scholar 

  69. Nettle D (2006) The evolution of personality variation in humans and other animals. Am Psychol 61:622–631

    Article  PubMed  Google Scholar 

  70. Nettle D, Penke L (2010) Personality: bridging the literatures from human psychology and behavioural ecology. Philos Trans R Soc B 365:4043–4050

    Article  Google Scholar 

  71. Neuhauser H, Thamm M (2007) Blutdruckmessung im Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsbla 50:728–735

    Article  CAS  Google Scholar 

  72. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978-e988

    Article  Google Scholar 

  73. Oli MK (2004) The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl Ecol 5:449–463

    Article  Google Scholar 

  74. Patel N, Walker N (2016) Clinical assessment of hypertension in children. Clin Hypertens 22:15–18

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pettay JE, Helle S, Jokela J, Lummaa V (2007) Natural selection on female life-history traits in relation to socio-economic class in pre-industrial human populations. PLoS One 2:e606

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pianka ER (1970) On r-and K-selection. Am Nat 104:592–597

    Article  Google Scholar 

  77. Réale D, Dingemanse NJ (2010) Personality and individual social specialisation. In: Szekely T, Moore AJ, Komdeur J (eds) Social behaviour: genes, ecology and evolution. Cambridge University Press, New York, pp 417–441

    Google Scholar 

  78. Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio PO (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B 365:4051–4063

    Article  Google Scholar 

  79. Rosario AS, Kurth B-M, Stolzenberg H, Ellert U, Neuhauser H (2010) Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003–2006). Eur J Clin Nutr 64:341–349

    Article  PubMed  Google Scholar 

  80. Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  81. Royauté R, Berdal MA, Garrison CR, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of- life syndrome hypothesis. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2472-z

  82. Rushton JP (1985) Differential K theory: the sociobiology of individual and group differences. Pers Indiv Differ 6:441–452

    Article  Google Scholar 

  83. Simonetti GD, Schwertz R, Klett M, Hoffmann GF, Schaefer F, Wühl E (2011) Determinants of blood pressure in preschool children. The role of parental smoking. Circulation 123:292–298

    Article  PubMed  Google Scholar 

  84. Smith BH (1992) Life history and the evolution of human maturation. Evol Anthropol 1:134–142

    Article  Google Scholar 

  85. Snodgrass JJ, Leonard WR, Sorensen MV, Tarskaia LA, Mosher MJ (2008) The influence of basal metabolic rate on blood pressure among indigenous Siberians. Am J Phys Anthropol 137:145–155

    Article  PubMed  Google Scholar 

  86. Stearns S (1982) The role of development in the evolution of life histories. In: Bonner JT (ed) Evolution and development. Dahlem workshop reports (life sciences research report), vol. 22. Springer, Berlin, pp 237–258

    Google Scholar 

  87. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  88. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  89. Steinberg L (2008) A social neuroscience perspective on adolescent risk-taking. Dev Rev 28:78–106

    Article  PubMed  PubMed Central  Google Scholar 

  90. Susanne C, Bodzsar E (1998) Patterns of secular change of growth and development. In: Bodzsar EB, Susanne C (eds) Secular growth changes in Europe, 1st edn. Eötvös University Press, Budapest, pp 5–26

    Google Scholar 

  91. Swanson SA, Crow SJ, Le Grange D, Swendsen J, Merikangas KR (2011) Prevalence and correlates of eating disorders in adolescents: results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiat 68:714–723

    Article  PubMed  Google Scholar 

  92. Tanner J (1962) Growth at adolescence. Blackwell Scientific Publications, Oxford

    Google Scholar 

  93. Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36:747–756

    Article  PubMed  Google Scholar 

  94. Uher J (2011) Personality in nonhuman primates: what can we learn from human personality psychology? In: Weiss A, King J, Murray L (eds) Personality and temperament in nonhuman primates. Springer, New York, pp 41–76

  95. Ullman JB (2006) Structural equation modeling: reviewing the basics and moving forward. J Pers Assess 87:35–50

    Article  PubMed  Google Scholar 

  96. van der Steen M, Hokken-Koelega AC (2016) Growth and metabolism in children born small for gestational age. Endocrin Metab Clin 45:283–294

    Article  Google Scholar 

  97. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  98. Walker R, Gurven M, Hill K, Migliano A, Chagnon N, De Souza R, Djurovic G, Hames R, Hurtado AM, Kaplan H (2006) Growth rates and life histories in twenty-two small-scale societies. Am J Hum Biol 18:295–311

    Article  PubMed  Google Scholar 

  99. Worthman CM (1999) Evolutionary perspectives on the onset of puberty. Evol Med:135–163

Download references

Acknowledgments

We thank all participants of the two workshops Towards a general theory of the pace-of-life syndrome, held in Hannover in 2015 and 2016, for inspiring discussions as well as the Volkswagen Stiftung (Az. 89905) for funding these workshops. We thank Marco Del Giudice, Denis Réale, Willem Frankenhuis and one anonymous reviewer as well as members of the Animal Ecology group at the University of Potsdam for providing constructive comments on earlier versions of the manuscript.

Funding

This study and two workshops Towards a general theory of the pace of life syndrome were funded by Volkswagen Stiftung (Az. 89905).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Lehmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. The KiGGS survey was reviewed and approved by the responsible ethics committee at the University Hospital of the Charité of the Humboldt University in Berlin.

Additional information

This article is a contribution to the Topical Collection Pace-of-life syndromes: a framework for the adaptive integration of behavior, physiology and life-history - Guest Editors: Melanie Dammhahn, Niels J. Dingemanse, Petri T. Niemelä, Denis Réale.

Communicated by D. Réale

Electronic supplementary material

Table S1

(XLSX 17 kb)

Table S2

(XLSX 39 kb)

Table S3

(XLSX 24 kb)

Table S4

(XLSX 18 kb)

Table S5

(XLSX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehmann, A., Eccard, J.A., Scheffler, C. et al. Under pressure: human adolescents express a pace-of-life syndrome. Behav Ecol Sociobiol 72, 57 (2018). https://doi.org/10.1007/s00265-018-2465-y

Download citation

Keywords

  • Adolescence
  • Humans
  • Life history
  • Menarche
  • Physiology
  • Risk taking