Advertisement

Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls

  • Markus Wöhr
Review
Part of the following topical collections:
  1. From sensory perception to behavior

Abstract

Rats are highly social animals, with a rich social behavioral repertoire, including the emission of so-called ultrasonic vocalizations (USV). Typically, three main types of USV can be distinguished based on a number of acoustic features, such as call duration, peak frequency, and frequency modulation: (I) isolation-induced 40-kHz USV in pups, as well as (II) aversive 22-kHz USV and (III) appetitive 50-kHz USV in juvenile and adult rats. In this review, evidence from selective breeding, devocalization, and playback studies is summarized and discussed, and it is concluded that appetitive 50-kHz USV serve as situation-dependent socio-affective signals with important communicative functions, for instance as play signals and/or social contact calls.

Keywords

Rough-and-tumble play Social play Social approach Ultrasonic vocalization Playback 

Notes

Funding

This work was supported by a grant from the Deutsche Forschungsgemeinschaft to MW (DFG; WO 1732/4-1).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Adler NT, Anisko JJ (1979) The behavior of communicating: an analysis of the 22 kHz call of rats (Rattus norvegicus). Am Zool 19(2):493–508.  https://doi.org/10.1093/icb/19.2.493 Google Scholar
  2. Anisko JJ, Suer SF, McClintock MK, Adler NT (1978) Relation between 22-kHz ultrasonic signals and sociosexual behavior in rats. J Comp Physiol Psychol 92(5):821–829.  https://doi.org/10.1037/h0077534 PubMedGoogle Scholar
  3. Anderson JW (1954) The production of ultrasonic sounds by laboratory rats and other mammals. Science 119(3101):808–809.  https://doi.org/10.1126/science.119.3101.808 PubMedGoogle Scholar
  4. Barfield RJ, Auerbach P, Geyer LA, McIntosh TK (1979) Ultrasonic vocalizations in rat sexual behavior. Am Zool 19(2):469–480.  https://doi.org/10.1093/icb/19.2.469 Google Scholar
  5. Barfield RJ, Geyer LA (1972) Sexual behavior: ultrasonic postejaculatory song of the male rat. Science 176(4041):1349–1350.  https://doi.org/10.1126/science.176.4041.1349 PubMedGoogle Scholar
  6. Barfield RJ, Geyer LA (1975) The ultrasonic postejaculatory vocalization and the postejaculatory refractory period of the male rat. J Comp Physiol Psychol 88(2):723–734.  https://doi.org/10.1037/h0076435 PubMedGoogle Scholar
  7. Barfield RJ, Thomas DA (1986) The role of ultrasonic vocalizations in the regulation of reproduction in rats. Ann N Y Acad Sci 474(1 Reproduction):33–43.  https://doi.org/10.1111/j.1749-6632.1986.tb27996.x PubMedGoogle Scholar
  8. Bialy M, Bogacki-Rychlik W, Kasarello K, Nikolaev E, Sajdel-Sulkowska EM (2016) Modulation of 22-kHz postejaculatory vocalizations by conditioning to new place: evidence for expression of a positive emotional state. Behav Neurosci 130(4):415–421.  https://doi.org/10.1037/bne0000153 PubMedGoogle Scholar
  9. Blanchard RJ, Agullana R, McGee L, Weiss S, Blanchard CD (1992) Sex differences in the incidence and sonographic characteristcis of antipredator ultrasonic cries in the laboratory rat (Rattus norvegicus). J Comp Psychol 106(3):270–277.  https://doi.org/10.1037/0735-7036.106.3.270 PubMedGoogle Scholar
  10. Blanchard RJ, Blanchard DC, Agullana R, Weiss SM (1991) Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol Behav 50(5):967–972.  https://doi.org/10.1016/0031-9384(91)90423-L PubMedGoogle Scholar
  11. Brenes JC, Lackinger M, Höglinger GU, Schratt G, Schwarting RKW, Wöhr M (2016) Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. J Comp Neurol 524(8):1586–1607.  https://doi.org/10.1002/cne.23842 PubMedGoogle Scholar
  12. Browning JR, Whiteman AC, Leung LY, XM L, Shear DA (2017) Air-puff induced vocalizations: a novel approach to detecting negative affective state following concussion in rats. J Neurosci Methods 275:45–49.  https://doi.org/10.1016/j.jneumeth.2016.10.017 PubMedGoogle Scholar
  13. Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23(3):310–317.  https://doi.org/10.1016/j.conb.2013.01.014 PubMedGoogle Scholar
  14. Brudzynski SM, Gibson B, Silkstone M, Burgdorf J, Kroes RA, Moskal JR, Panksepp J (2011a) Motor and locomotor responses to systemic amphetamine in three lines of selectively bred Long-Evans rats. Pharmacol Biochem Behav 100(1):119–124.  https://doi.org/10.1016/j.pbb.2011.08.006 PubMedGoogle Scholar
  15. Brudzynski SM, Holland G (2005) Acoustic characteristics of air puff-induced 22-kHz alarm calls in direct recordings. Neurosci Biobehav Rev 29(8):1169–1180.  https://doi.org/10.1016/j.neubiorev.2005.04.007 PubMedGoogle Scholar
  16. Brudzynski SM, Kehoe P, Callahan M (1999) Sonographic structure of isolation-induced ultrasonic calls of rat pups. Dev Psychobiol 34:195–204  https://doi.org/10.1002/(SICI)1098-2302(199904)34:3<195::AID-DEV4>3.0.CO;2-S PubMedGoogle Scholar
  17. Brudzynski SM, Pniak A (2002) Social contacts and production of 50-kHz short ultrasonic calls in adult rats. J Comp Psychol 116(1):73–82.  https://doi.org/10.1037/0735-7036.116.1.73 PubMedGoogle Scholar
  18. Brudzynski SM, Silkstone M, Komadoski M, Scullion K, Duffus S, Burgdorf J, Kroes RA, Moskal JR, Panksepp J (2011b) Effects of intraaccumbens amphetamine on production of 50 kHz vocalizations in three lines of selectively bred Long-Evans rats. Behav Brain Res 217(1):32–40.  https://doi.org/10.1016/j.bbr.2010.10.006 PubMedGoogle Scholar
  19. Brunelli SA (2005) Selective breeding for an infant phenotype: rat pup ultrasonic vocalization (USV). Behav Genet 35(1):53–65.  https://doi.org/10.1007/s10519-004-0855-6 PubMedGoogle Scholar
  20. Brunelli SA, Nie R, Whipple C, Winiger V, Hofer MA, Zimmerberg B (2006) The effects of selective breeding for infant ultrasonic vocalizations on play behavior in juvenile rats. Physiol Behav 87(3):527–536.  https://doi.org/10.1016/j.physbeh.2005.11.020 PubMedGoogle Scholar
  21. Burgdorf J, Kroes RA, Beinfeld MC, Panksepp J, Moskal JR (2010) Uncovering the molecular basis of positive affect using rough-and-tumble play in rats: a role for insulin-like growth factor I. Neuroscience 168(3):769–777.  https://doi.org/10.1016/j.neuroscience.2010.03.045 PubMedGoogle Scholar
  22. Burgdorf J, Kroes RA, Moskal JR, Pfaus JG, Brudzynski SM, Panksepp J (2008) Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: behavioral concomitants, relationship to reward, and self-administration of playback. J Comp Psychol 122(4):357–367.  https://doi.org/10.1037/a0012889 PubMedGoogle Scholar
  23. Burgdorf J, Kroes RA, Weiss C, MM O, Disterhoft JF, Brudzynski SM, Panksepp J, Moskal JR (2011a) Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors. Neuroscience 192:515–523.  https://doi.org/10.1016/j.neuroscience.2011.05.001 PubMedPubMedCentralGoogle Scholar
  24. Burgdorf J, Moskal JR, Brudzynski SM, Panksepp J (2013) Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors. Behav Brain Res 251:18–24.  https://doi.org/10.1016/j.bbr.2013.04.022 PubMedPubMedCentralGoogle Scholar
  25. Burgdorf J, Panksepp J, Moskal JR (2011b) Frequency-modulated 50 kHz ultrasonic vocalizations: a tool for uncovering the molecular substrates of positive affect. Neurosci Biobehav Rev 35(9):1831–1836.  https://doi.org/10.1016/j.neubiorev.2010.11.011 PubMedGoogle Scholar
  26. Burgdorf J, Panksepp J, Beinfeld MC, Kroes RA, Moskal JR (2006) Regional brain cholecystokinin changes as a function of rough-and-tumble play behavior in adolescent rats. Peptides 27(1):172–177.  https://doi.org/10.1016/j.peptides.2005.07.005 PubMedGoogle Scholar
  27. Burgdorf J, Panksepp J, Brudzynski SM, Beinfeld MC, Cromwell HC, Kroes RA, Moskal JR (2009) The effects of selective breeding for differential rates of 50-kHz ultrasonic vocalizations on emotional behavior in rats. Dev Psychobiol 51(1):34–46.  https://doi.org/10.1002/dev.20343 PubMedGoogle Scholar
  28. Burgdorf J, Panksepp J, Brudzynski SM, Kroes R, Moskal JR (2005) Breeding for 50-kHz positive affective vocalization in rats. Behav Genet 35(1):67–72.  https://doi.org/10.1007/s10519-004-0856-5 PubMedGoogle Scholar
  29. Dice LR, Barto E (1952) Ability of mice of the genus Peromyscus to hear ultrasonic sounds. Science 116(3005):110–111.  https://doi.org/10.1126/science.116.3005.110 PubMedGoogle Scholar
  30. Dichter GS, Brunelli SA, Hofer MA (1996) Elevated plus-maze behavior in adult offspring of selectively bred rats. Physiol Behav 60(1):299–304.  https://doi.org/10.1016/0031-9384(95)02222-8 PubMedGoogle Scholar
  31. Engelhardt KA, Fuchs E, Schwarting RKW, Wöhr M (2017a) Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: implications for mania models. Eur Neuropsychopharmacol 27(3):261–273.  https://doi.org/10.1016/j.euroneuro.2017.01.003 PubMedGoogle Scholar
  32. Engelhardt KA, Schwarting RKW, Wöhr M (2017b) Mapping trait-like socio-affective phenotypes in rats through 50-kHz ultrasonic vocalizations. Psychopharmacology (published online,  https://doi.org/10.1007/s00213-017-4746-y)
  33. Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23(5):743–760.  https://doi.org/10.1016/S0149-7634(99)00016-0 PubMedGoogle Scholar
  34. Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N (2015) Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 16(2):94–108.  https://doi.org/10.1038/nrn3888 PubMedGoogle Scholar
  35. Gould J, Morgan C (1941) Hearing in the rat at high frequencies. Science 94(2433):168.  https://doi.org/10.1126/science.94.2433.168 PubMedGoogle Scholar
  36. Harmon KM, Cromwell HC, Burgdorf J, Moskal JR, Brudzynski SM, Kroes RA, Panksepp J (2008) Rats selectively bred for low levels of 50 kHz ultrasonic vocalizations exhibit alterations in early social motivation. Dev Psychobiol 50(4):322–331.  https://doi.org/10.1002/dev.20294 PubMedGoogle Scholar
  37. Himmler BT, Kisko TM, Euston DR, Kolb B, Pellis SM (2014) Are 50-kHz calls used as play signals in the playful interactions of rats? I. Evidence from the timing and context of their use. Behav Process 106:60–66.  https://doi.org/10.1016/j.beproc.2014.04.014 Google Scholar
  38. Iacobucci P, Colonnello V, Fuchs T, D'Antuono L, Panksepp J (2013) Differential ultrasonic indices of separation distress in the presence and absence of maternal cues in infant rats bred for high and low positive social affect. Acta Neuropsychiatr 25(05):289–296.  https://doi.org/10.1017/neu.2013.6 PubMedGoogle Scholar
  39. Inagaki H, Ushida T (2017) Changes in acoustic startle reflex in rats induced by playback of 22-kHz calls. Physiol Behav 169:189–194.  https://doi.org/10.1016/j.physbeh.2016.11.015 PubMedGoogle Scholar
  40. Ishiyama S, Brecht M (2016) Neural correlates of ticklishness in the rat somatosensory cortex. Science 354:757–760.  https://doi.org/10.1126/science.aah5114 PubMedGoogle Scholar
  41. Jelen P, Soltysik S, Zagrodzka J (2003) 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear: behavioral and pharmacological modulation of affective state. Behav Brain Res 141(1):63–72.  https://doi.org/10.1016/S0166-4328(02)00321-2 PubMedGoogle Scholar
  42. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21(3):149–156.  https://doi.org/10.1016/j.tree.2006.01.001 PubMedGoogle Scholar
  43. Kagawa H, Seki Y, Okanoya K (2017) Affective valence of neurons in the vicinity of the rat amygdala: single unit activity in response to a conditioned behavior and vocal sound playback. Behav Brain Res 324:109–114.  https://doi.org/10.1016/j.bbr.2017.02.022 PubMedGoogle Scholar
  44. Kim EJ, Kim ES, Covey E, Kim JJ (2010) Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS One 5(12):e15077.  https://doi.org/10.1371/journal.pone.0015077 PubMedPubMedCentralGoogle Scholar
  45. Kisko TM, Euston DR, Pellis SM (2015a) Are 50-kHz calls used as play signals in the playful interactions of rats? III. The effects of devocalization on play with unfamiliar partners as juveniles and as adults. Behav Process 113:113–1121.  https://doi.org/10.1016/j.beproc.2015.01.016 Google Scholar
  46. Kisko TM, Himmler BT, Himmler SM, Euston DR, Pellis SM (2015b) Are 50-kHz calls used as play signals in the playful interactions of rats? II. Evidence from the effects of devocalization. Behav Process 111:25–33.  https://doi.org/10.1016/j.beproc.2014.11.011 Google Scholar
  47. Kisko TM, Wöhr M, Pellis VC, Pellis SM (2017) From play to aggression: high-frequency 50-kHz ultrasonic vocalizations as play and appeasement signals in rats. Curr Top Behav Neurosci 30:91–108.  https://doi.org/10.1007/7854_2015_432 PubMedGoogle Scholar
  48. Knutson B, Burgdorf J, Panksepp J (1998) Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats. J Comp Psychol 112(1):65–73.  https://doi.org/10.1037/0735-7036.112.1.65 PubMedGoogle Scholar
  49. LaFollette MR, O'Haire ME, Cloutier S, Blankenberger WB, Gaskill BN (2017) Rat tickling: a systematic review of applications, outcomes, and moderators. PLoS One 12(4):e0175320.  https://doi.org/10.1371/journal.pone.0175320 PubMedPubMedCentralGoogle Scholar
  50. Langbauer WR (2000) Elephant communication. Zoo Biol 19(5):425–445.  https://doi.org/10.1002/1098-2361(2000)19:5<425::AID-ZOO11>3.0.CO;2-A Google Scholar
  51. Łopuch S, Popik P (2011) Cooperative behavior of laboratory rats (Rattus norvegicus) in an instrumental task. J Comp Psychol 125(2):250–253.  https://doi.org/10.1037/a0021532 PubMedGoogle Scholar
  52. Lore R, Flannelly K, Farina P (1976) Ultrasounds produced by rats accompany decreases in intraspecific fighting. Aggress Behav 2(3):175–181.  https://doi.org/10.1002/1098-2337(1976)2:3<175::AID-AB2480020302>3.0.CO;2-7 Google Scholar
  53. Lorenz K (1935) Der Kumpan in der Umwelt des Vogels–Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. J Ornithol 83(2):137–213.  https://doi.org/10.1007/BF01905355 Google Scholar
  54. Lukas M, Wöhr M (2015) Endogenous vasopressin, innate anxiety, and the emission of pro-social 50-kHz ultrasonic vocalizations during social play behavior in juvenile rats. Psychoneuroendocrinology 56:35–44.  https://doi.org/10.1016/j.psyneuen.2015.03.005 PubMedGoogle Scholar
  55. Madsen PT, Surlykke A (2013) Functional convergence in bat and toothed whale biosonars. Physiology (Bethesda) 28(5):276–283.  https://doi.org/10.1152/physiol.00008.2013 Google Scholar
  56. Manduca A, Campolongo P, Palmery M, Vanderschuren LJ, Cuomo V, Trezza V (2014a) Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-Dawley rats. Psychopharmacology 231(8):1661–1673.  https://doi.org/10.1007/s00213-013-3337-9 PubMedGoogle Scholar
  57. Manduca A, Servadio M, Campolongo P, Palmery M, Trabace L, Vanderschuren LJ, Cuomo V, Trezza V (2014b) Strain- and context-dependent effects of the anandamide hydrolysis inhibitor URB597 on social behavior in rats. Eur Neuropsychopharmacol 24(8):1337–1348.  https://doi.org/10.1016/j.euroneuro.2014.05.009 PubMedGoogle Scholar
  58. Maren S, Quirk GJ (2004) Neuronal signaling of fear memory. Nat Rev Neurosci 5(11):844–852.  https://doi.org/10.1038/nrn1535 PubMedGoogle Scholar
  59. McGowen MR, Gatesy J, Wildman DE (2014) Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol Evol 29(6):336–346.  https://doi.org/10.1016/j.tree.2014.04.001 PubMedGoogle Scholar
  60. Moskal JR, Burgdorf J, Kroes RA, Brudzynski SM, Panksepp J (2011) A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism. Neurosci Biobehav Rev 35(9):1982–1988.  https://doi.org/10.1016/j.neubiorev.2011.06.006 PubMedGoogle Scholar
  61. Mu P, Fuchs T, Saal DB, Sorg BA, Dong Y, Panksepp J (2009) Repeated cocaine exposure induces sensitization of ultrasonic vocalization in rats. Neurosci Lett 453(1):31–35.  https://doi.org/10.1016/j.neulet.2009.02.007 PubMedPubMedCentralGoogle Scholar
  62. Mu P, Moyer JT, Ishikawa M, Zhang Y, Panksepp J, Sorg BA, Schlüter OM, Dong Y (2010) Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J Neurosci 30(10):3689–3699.  https://doi.org/10.1523/JNEUROSCI.4063-09.2010 PubMedPubMedCentralGoogle Scholar
  63. O'Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology (Bethesda) 22(4):287–294.  https://doi.org/10.1152/physiol.00008.2007 Google Scholar
  64. Ouda L, Jílek M, Syka J (2016) Expression of c-Fos in rat auditory and limbic systems following 22-kHz calls. Behav Brain Res 308:196–204PubMedGoogle Scholar
  65. Panksepp J (2005) Psychology. Beyond a joke: from animal laughter to human joy? Science 308(5718):62–63.  https://doi.org/10.1126/science.1112066 PubMedGoogle Scholar
  66. Panksepp J, Burgdorf J (2000) 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: effects of social housing and genetic variables. Behav Brain Res 115(1):25–38.  https://doi.org/10.1016/S0166-4328(00)00238-2 PubMedGoogle Scholar
  67. Panksepp J, Burgdorf J (2003) “Laughing” rats and the evolutionary antecedents of human joy? Physiol Behav 79(3):533–547.  https://doi.org/10.1016/S0031-9384(03)00159-8 PubMedGoogle Scholar
  68. Panksepp J, Burgdorf J, Gordon N (2001) Towards a genetics of joy: breeding rats for “laughter”. In: Kazniak A (ed) Emotions, qualia, and consciousness. World Scientific, Singapore, pp 123–136.  https://doi.org/10.1142/9789812810687_0012 Google Scholar
  69. Panksepp J, Gordon N, Burgdorf J (2002) Empathy and the action-perception resonances of basic socio-emotional systems of the brain. Behav Brain Sci 25:43.  https://doi.org/10.1017/S0140525X0247001X Google Scholar
  70. Parsana AJ, Li N, Brown TH (2012) Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behav Brain Res 226(1):77–86.  https://doi.org/10.1016/j.bbr.2011.08.040 PubMedGoogle Scholar
  71. Pereira M, Andreatini R, Schwarting RKW, Brenes JC (2014) Amphetamine-induced appetitive 50-kHz calls in rats: a marker of affect in mania? Psychopharmacology 231(13):2567–2577.  https://doi.org/10.1007/s00213-013-3413-1 PubMedGoogle Scholar
  72. Portfors CV, Perkel DJ (2014) The role of ultrasonic vocalizations in mouse communication. Curr Opin Neurobiol 28:115–120.  https://doi.org/10.1016/j.conb.2014.07.002 PubMedGoogle Scholar
  73. Pultorak JD, Kelm-Nelson CA, Holt LR, Blue KV, Ciucci MR, Johnson AM (2016) Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Soc Neurosci 11(4):365–379.  https://doi.org/10.1080/17470919.2015.1086434 PubMedGoogle Scholar
  74. Raza S, Himmler BT, Himmler SM, Harker A, Kolb B, Pellis SM, Gibb R (2015) Effects of prenatal exposure to valproic acid on the development of juvenile-typical social play in rats. Behav Pharmacol 26:707–719.  https://doi.org/10.1097/FBP.0000000000000169
  75. Rippberger H, van Gaalen MM, Schwarting RKW, Wöhr M (2015) Environmental and pharmacological modulation of amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Curr Neuropharmacol 13(2):220–232.  https://doi.org/10.2174/1570159X1302150525124408 PubMedPubMedCentralGoogle Scholar
  76. Sachs BD, Bialy M (2000) Female presence during postejaculatory interval facilitates penile erection and 22-kHz vocalization in male rats. Behav Neurosci 114(6):1203–1208.  https://doi.org/10.1037/0735-7044.114.6.1203 PubMedGoogle Scholar
  77. Sadananda M, Wöhr M, Schwarting RKW (2008) Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain. Neurosci Lett 435(1):17–23.  https://doi.org/10.1016/j.neulet.2008.02.002 PubMedGoogle Scholar
  78. Saito Y, Okanoya K (2017) Response characteristics of the rat anterior cingulate cortex to ultrasonic communicative vocalizations. Neuroreport 28(9):479–484.  https://doi.org/10.1097/WNR.0000000000000781 PubMedGoogle Scholar
  79. Saito Y, Yuki S, Seki Y, Kagawa H, Okanoya K (2016) Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behav Process 132:5–11.  https://doi.org/10.1016/j.beproc.2016.08.005 Google Scholar
  80. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485.  https://doi.org/10.1016/j.neuron.2012.10.021 PubMedPubMedCentralGoogle Scholar
  81. Sales GD (1972a) Ultrasound and aggressive behaviour in rats and other small mammals. Anim Behav 20(1):88–100.  https://doi.org/10.1016/S0003-3472(72)80177-5 PubMedGoogle Scholar
  82. Sales GD (1972b) Ultrasound and mating behaviour in rodents with some observations on other behavioural situations. J Zool 168:149–164.  https://doi.org/10.1111/j.1469-7998.1972.tb01345.x Google Scholar
  83. Schleidt WM (1948) Töne hoher Frequenz bei Mäusen. Experientia 4(4):145–146.  https://doi.org/10.1007/BF02164342 PubMedGoogle Scholar
  84. Schleidt WM (1951) Töne hoher Frequenz bei Mäusen. Experientia 7(2):65–66.  https://doi.org/10.1007/BF02153830 PubMedGoogle Scholar
  85. Schleidt WM (1952) Reaktionen auf Töne hoher Frequenz bei Nagern. Naturwissenschaften 39(3):69–70.  https://doi.org/10.1007/BF00596819 Google Scholar
  86. Schneider P, Pätz M, Spanagel R, Schneider M (2016) Adolescent social rejection alters pain processing in a CB1 receptor dependent manner. Eur Neuropsychopharmacol 26(7):1201–1212.  https://doi.org/10.1016/j.euroneuro.2016.04.007 PubMedGoogle Scholar
  87. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30(5):203–210.  https://doi.org/10.1016/j.tins.2007.03.007 PubMedGoogle Scholar
  88. Schwarting RKW, Jegan N, Wöhr M (2007) Situational factors, conditions and individual variables which can determine ultrasonic vocalizations in male adult Wistar rats. Behav Brain Res 182(2):208–222.  https://doi.org/10.1016/j.bbr.2007.01.029 PubMedGoogle Scholar
  89. Seffer D, Rippberger H, Schwarting RKW, Wöhr M (2015) Pro-social 50-kHz ultrasonic communication in rats: post-weaning but not post-adolescent social isolation leads to social impairments-phenotypic rescue by re-socialization. Front Behav Neurosci 9:102.  https://doi.org/10.3389/fnbeh.2015.00102 PubMedPubMedCentralGoogle Scholar
  90. Seffer D, Schwarting RKW, Wöhr M (2014) Pro-social ultrasonic communication in rats: insights from playback studies. J Neurosci Methods 234:73–81.  https://doi.org/10.1016/j.jneumeth.2014.01.023 PubMedGoogle Scholar
  91. Sewell GD (1970) Ultrasonic communication in rodents. Nature 227(5256):410.  https://doi.org/10.1038/227410a0 PubMedGoogle Scholar
  92. Siviy SM, Panksepp J (1987) Sensory modulation of juvenile play in rats. Dev Psychobiol 20(1):39–55.  https://doi.org/10.1002/dev.420200108 PubMedGoogle Scholar
  93. Snoeren EM, Ågmo A (2014) The incentive value of males’ 50-kHz ultrasonic vocalizations for female rats (Rattus norvegicus). J Comp Psychol 128(1):40–55.  https://doi.org/10.1037/a0033204 PubMedGoogle Scholar
  94. Thomas DA, Barfield RJ (1985) Ultrasonic vocalization of the female rat (Rattus norvegicus) during mating. Anim Behav 33(3):720–725.  https://doi.org/10.1016/S0003-3472(85)80002-6 Google Scholar
  95. Thomas DA, Howard SB, Barfield RJ (1982) Male-produced postejaculatory 22-kHz vocalizations and the mating behavior of estrous female rats. Behav Neural Biol 36(4):403–410.  https://doi.org/10.1016/S0163-1047(82)90802-0 PubMedGoogle Scholar
  96. van der Poel AM, Miczek KA (1991) Long ultrasonic calls in male rats following mating, defeat and aversive stimulation: frequency modulation and bout structure. Behaviour 119(1):127–142.  https://doi.org/10.1163/156853991X00409 Google Scholar
  97. van der Poel AM, Noach EJ, Miczek KA (1989) Temporal patterning of ultrasonic distress calls in the adult rat: effects of morphine and benzodiazepines. Psychopharmacology 97(2):147–148.  https://doi.org/10.1007/BF00442236 PubMedGoogle Scholar
  98. Waddell J, Yang T, Ho E, Wellmann KA, Mooney SM (2016) Prenatal ethanol exposure and whisker clipping disrupt ultrasonic vocalizations and play behavior in adolescent rats. Brain Sci 6:e43.  https://doi.org/10.3390/brainsci6040043 PubMedGoogle Scholar
  99. Webber ES, Harmon KM, Beckwith TJ, Peña S, Burgdorf J, Panksepp J, Cromwell HC (2012) Selective breeding for 50 kHz ultrasonic vocalization emission produces alterations in the ontogeny and regulation of rough-and-tumble play. Behav Brain Res 229(1):138–144.  https://doi.org/10.1016/j.bbr.2012.01.012 PubMedGoogle Scholar
  100. Wellmann KA, George F, Brnouti F, Mooney SM (2015) Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res 286:201–211.  https://doi.org/10.1016/j.bbr.2015.02.048 PubMedPubMedCentralGoogle Scholar
  101. Wellmann KA, Varlinskaya EI, Mooney SM (2014) D-Cycloserine ameliorates social alterations that result from prenatal exposure to valproic acid. Brain Res Bull 108:1–9.  https://doi.org/10.1016/j.brainresbull.2014.08.001 PubMedPubMedCentralGoogle Scholar
  102. Willadsen M, Seffer D, Schwarting RK, Wöhr M (2014) Rodent ultrasonic communication: male prosocial 50-kHz ultrasonic vocalizations elicit social approach behavior in female rats (Rattus norvegicus). J Comp Psychol 128(1):56–64.  https://doi.org/10.1037/a0034778 PubMedGoogle Scholar
  103. Willey AR, Varlinskaya EI, Spear LP (2009) Social interactions and 50 kHz ultrasonic vocalizations in adolescent and adult rats. Behav Brain Res 202:122–129.  https://doi.org/10.1016/j.bbr.2009.03.025 PubMedPubMedCentralGoogle Scholar
  104. Willuhn I, Tose A, Wanat MJ, Hart AS, Hollon NG, Phillips PE, Schwarting RKW, Wöhr M (2014) Phasic dopamine release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in rats. J Neurosci 34(32):10616–10623.  https://doi.org/10.1523/JNEUROSCI.1060-14.2014 PubMedPubMedCentralGoogle Scholar
  105. Wöhr M, Borta A, Schwarting RKW (2005) Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose-response study in the rat. Neurobiol Learn Mem 84(3):228–240.  https://doi.org/10.1016/j.nlm.2005.07.004 PubMedGoogle Scholar
  106. Wöhr M, Engelhardt KA, Seffer D, Sungur AÖ, Schwarting RKW (2017) Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socio-affective signals. Curr Top Behav Neurosci 30:67–89.  https://doi.org/10.1007/7854_2015_410 PubMedGoogle Scholar
  107. Wöhr M, Houx B, Schwarting RKW, Spruijt B (2008) Effects of experience and context on 50-kHz vocalizations in rats. Physiol Behav 93(4-5):766–776.  https://doi.org/10.1016/j.physbeh.2007.11.031 PubMedGoogle Scholar
  108. Wöhr M, Kehl M, Borta A, Schänzer A, Schwarting RKW, Höglinger GU (2009) New insights into the relationship of neurogenesis and affect: tickling induces hippocampal cell proliferation in rats emitting appetitive 50-kHz ultrasonic vocalizations. Neuroscience 163(4):1024–1030.  https://doi.org/10.1016/j.neuroscience.2009.07.043 PubMedGoogle Scholar
  109. Wöhr M, Scattoni ML (2013) Behavioural methods used in rodent models of autism spectrum disorders: current standards and new developments. Behav Brain Res 251:5–17.  https://doi.org/10.1016/j.bbr.2013.05.047 PubMedGoogle Scholar
  110. Wöhr M, Schwarting RKW (2007) Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior? PLoS One 2(12):e1365.  https://doi.org/10.1371/journal.pone.0001365 PubMedPubMedCentralGoogle Scholar
  111. Wöhr M, Schwarting RKW (2008a) Maternal care, isolation-induced infant ultrasonic calling, and their relations to adult anxiety related behavior in the rat. Behav Neurosci 122(2):310–330.  https://doi.org/10.1037/0735-7044.122.2.310 PubMedGoogle Scholar
  112. Wöhr M, Schwarting RKW (2008b) Ultrasonic calling during fear conditioning in the rat: no evidence for an audience effect. Anim Behav 76(3):749–760.  https://doi.org/10.1016/j.anbehav.2008.04.017 Google Scholar
  113. Wöhr M, Schwarting RKW (2009) Ultrasonic communication in rats: effects of morphine and naloxone on vocal and behavioral responses to playback of 50-kHz vocalizations. Pharmacol Biochem Behav 94(2):285–295.  https://doi.org/10.1016/j.pbb.2009.09.008 PubMedGoogle Scholar
  114. Wöhr M, Schwarting RKW (2012) Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 98(2):154–164.  https://doi.org/10.1016/j.nlm.2012.05.004 PubMedGoogle Scholar
  115. Wöhr M, Schwarting RKW (2013) Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 354(1):81–97.  https://doi.org/10.1007/s00441-013-1607-9 PubMedGoogle Scholar
  116. Wöhr M, Seffer D, Schwarting RKW (2016) Studying socio-affective communication in rats through playback of ultrasonic vocalizations. Curr Protoc Neurosci 75:8.35.1–8.35.17.  https://doi.org/10.1002/cpns.7 Google Scholar
  117. Wright JM, Gourdon JC, Clarke PB (2010) Identification of multiple call categories within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of amphetamine and social context. Psychopharmacology 211(1):1–13.  https://doi.org/10.1007/s00213-010-1859-y PubMedGoogle Scholar
  118. Zippelius HM, Schleidt WM (1956) Ultraschall-Laute bei jungen Mäusen. Naturwissenschaften 43(21):502.  https://doi.org/10.1007/BF00632534 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Behavioral Neuroscience, Experimental and Biological PsychologyPhilipps-University of MarburgMarburgGermany

Personalised recommendations