Skip to main content

Immune challenged male Iberian green lizards may increase the expression of some sexual signals if they have supplementary vitamin E

Abstract

Honesty of sexual signals demands a link between the signal and fitness of the signalers, which can be based on the costs of the signal and trade-offs between signal development and essential physiological functions, such as the immune defense or the antioxidant system. We experimentally challenged the immune system of male lizards Lacerta schreiberi with a bacterial antigen (lipopolysaccharide; LPS). We explored whether the immune activation influenced structural- and pigment-based visual signals and chemical signals. Furthermore, we examined the interactive effects of the immune activation with a vitamin E dietary supplementation, as this vitamin has important antioxidant functions in an immune challenged situation. Contrary to expected, lizards that suffered an immune challenge alone did not decrease the brightness or saturation of visual signals, and even, when challenged lizards had supplementary vitamin E, they were able to increase saturation of UV-blue throat coloration. Similarly, vitamin E supplementation allowed challenged males to maintain high levels of secretion of this vitamin in chemical signals. Males with an immune challenge would have low long-term expectatives of survival and future reproduction and, therefore, these challenged males, especially those with supplementary resources (vitamin E), might try to maximize their current fitness by investing in costly sexual signals, instead of compensating the negative physiological effects of the immune activation. Surprisingly, vitamin E alone did not affect structural and/or melanin-based coloration, but decreased carotenoid-based coloration, which was opposite to a previous experiment when climatic conditions in the year of study were more favorable. This might be explained if females showed flexible mate choice, selecting the type of signals that more reliably indicate male quality under different environmental circumstances.

Significance statement

The trade-offs between sexual signals and the immune and antioxidant systems, which allow honesty of signals, are little investigated, especially in reptiles. We examined in a lizard with multiple types of signals (UV-blue throat, yellow chest and green dorsal coloration, and chemical signals) the effects of a simulated immune challenge on these signals. Furthermore, we studied the interactions with vitamin E in the diet, as this is an important antioxidant and immunostimulant. Surprisingly, carotenoid-based signals were not influenced by the immune activation, but throat blue and UV of color patches increased when challenged males had more available vitamin E. This suggests that challenged, apparently ill, males might try to maximize their current mating success because their survivorship probabilities were low. Additionally, climatic differences and flexible female mate choice might explain the different effects of vitamin E observed in different years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abd Hamid N, Hasrul MA, Ruzanna RJ, Ibrahim IA, Baruah PS, Mazlan M, Mohd Yusof YA, Wan Ngah WZ (2011) Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise. Nutr J 10:37

  2. Aguiló A, Tauler P, Fuentespina E, Tur JA, Córdova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7

    PubMed  Article  CAS  Google Scholar 

  3. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  4. Allen DG, Pringle JK, Smith DA, Pasloske K, Day K (2004) Handbook of veterinary drugs. Lippincott-Raven Publishers, Philadelphia

  5. Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659

    PubMed  Google Scholar 

  6. Amar EC, Kiron V, Satoh S, Okamoto N, Watanabe T (2000) Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Sci 66:1068–1075

    Article  CAS  Google Scholar 

  7. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111:1–14

    PubMed  Article  Google Scholar 

  8. Andersson S, Prager M (2006) Quantifying colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol. 1. Mechanisms and measurements. Harvard University Press, Cambridge, pp 41–89

    Google Scholar 

  9. Aydilek N, Aksakal M, Karakılçık AZ (2004) Effects of testosterone and vitamin E on the antioxidant system in rabbit testis. Andrologia 36:277–281

    PubMed  Article  CAS  Google Scholar 

  10. Bagnara JT, Taylor JD, Hadley ME (1968) The dermal chromatophore unit. J Cell Biol 38:67–79

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Bajer K, Molnár O, Török J, Herczeg G (2010) Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behav Ecol Sociobiol 64:2007–2014

    Article  Google Scholar 

  12. Bajer K, Molnár O, Török J, Herczeg G (2011) Ultraviolet nuptial colour determines fight success in male European green lizard (Lacerta viridis). Biol Lett 7:866–868

    PubMed  PubMed Central  Article  Google Scholar 

  13. Bajer K, Molnár O, Török J, Herczeg G (2012) Temperature, but not available energy, affects the expression of a sexually selected ultraviolet (UV) colour trait in male European green lizards. PLoS One 7:e34359

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Ballen C, Healey M, Wilson M, Tobler M, Wapstra E, Olsson M (2012) Net superoxide levels: steeper increase with activity in cooler female and hotter male lizards. J Exp Biol 215:731–735

    PubMed  Article  Google Scholar 

  15. Basu HN, Del Vecchio AJ, Flider F, Orthoeter FT (2001) Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc 78:665–675

    Article  CAS  Google Scholar 

  16. Bender DA (2009) Nutritional biochemistry of the vitamins. Cambridge University Press, Cambridge

  17. Biard C, Surai PF, Møller AP (2006) Carotenoid availability in diet and phenotype of blue and great tit nestlings. J Exp Biol 209:1004–1015

    PubMed  Article  CAS  Google Scholar 

  18. Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    PubMed  Article  CAS  Google Scholar 

  19. Boillat M, Challet L, Rossier D, Kan C, Carleton A, Rodriguez I (2015) The vomeronasal system mediates sick conspecific avoidance. Curr Biol 25:251–255

    PubMed  Article  CAS  Google Scholar 

  20. Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    PubMed  Article  Google Scholar 

  21. Bonser RH (1995) Melanin and the abrasion resistance of feathers. Condor 97:590–591

    Article  Google Scholar 

  22. Boonekamp JJ, Ros AH, Verhulst S (2008) Immune activation suppresses plasma testosterone level: a meta-analysis. Biol Lett 4:741–744

    PubMed  PubMed Central  Article  Google Scholar 

  23. Boswell T, Takeuchi S (2005) Recent developments in our understanding of the avian melanocortin system: its involvement in the regulation of pigmentation and energy homeostasis. Peptides 26:1733–1743

    PubMed  Article  CAS  Google Scholar 

  24. Bowers RR, Biboso A, Chavez O (1997) The role of alpha-MSH, its agonists, and c-AMP in in vitro avian melanocytes. Pigment Cell Res 10:41–45

  25. Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  Article  CAS  Google Scholar 

  26. Bruno RS, Ramakrishnan R, Montine TJ, Bray TM, Traber MG (2005) α-tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am J Clin Nutr 81:95–103

    PubMed  Article  CAS  Google Scholar 

  27. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    PubMed  Article  CAS  Google Scholar 

  28. Chaine AS, Lyon BE (2008) Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science 319:459–462

    PubMed  Article  CAS  Google Scholar 

  29. Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257–261

    Article  Google Scholar 

  30. Clotfelter ED, Ardia DR, McGraw KJ (2007) Red fish, blue fish: trade-offs between pigmentation and immunity in Betta splendens. Behav Ecol 18:1139–1145

    Article  Google Scholar 

  31. Cloudsley-Thompson JL (1999) Multiple factors in the evolution of animal coloration. Naturwissenschaften 86:123–132

    PubMed  Article  CAS  Google Scholar 

  32. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    PubMed  Article  CAS  Google Scholar 

  33. Costagliola C, Luliano G, Menzione M, Rinaldi E, Vito P, Auricchio G (1986) Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species. Exp Eye Res 43:905–914

    PubMed  Article  CAS  Google Scholar 

  34. Cote J, Meylan S, Clobert J, Voituron Y (2010) Carotenoid-based coloration, oxidative stress and corticosterone in common lizards. J Exp Biol 213:2116–2124

    PubMed  Article  CAS  Google Scholar 

  35. Cuthill IC, Bennett ATD, Partridge JC, Maier EJ (1999) Plumage reflectance and the objective assessment of avian sexual dichromatism. Am Nat 153:183–200

    PubMed  Article  CAS  Google Scholar 

  36. Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24

    PubMed  Article  CAS  Google Scholar 

  37. Deen CM, Hutchison VH (2001) Effects of lipopolysaccharide and acclimation temperature on induced behavioral fever in juvenile Iguana iguana. J Therm Biol 26:55–63

    PubMed  Article  CAS  Google Scholar 

  38. de Pérez i Lanuza G, Font E (2014a) Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes, and behaviour. J Exp Biol 217:2899–2909

  39. de Pérez i Lanuza G, Font E (2014b) Now you see me, now you don’t: iridescence increases the efficacy of lizard chromatic signals. Naturwissenschaften 101:831–837

  40. de Pérez i Lanuza G, Font E (2016) The evolution of colour pattern complexity: selection for conspicuousness favours contrasting within-body colour combinations in lizards. J Evol Biol 29:942–951

  41. de Pérez i Lanuza G, Carazo P, Font E (2014) Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Anim Behav 90:73–81

  42. Di Mascio P, Murphy ME, Sies H (1991) Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53:194–200

    Article  Google Scholar 

  43. Diep SK, Westneat DF (2013) The integration of function and ontogeny in the evolution of status signals. Behaviour 150:1015–1044

    Google Scholar 

  44. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:115–132

    Article  Google Scholar 

  45. Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    PubMed  Article  Google Scholar 

  46. Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352

    Article  Google Scholar 

  47. Faivre B, Grégoire A, Préault M, Cézilly F, Sorci G (2003) Immune activation rapidly mirrored in a secondary sexual trait. Science 300:103

    PubMed  Article  CAS  Google Scholar 

  48. Feingold KR, Grunfeld C (1992) Role of cytokines in inducing hyperlipidemia. Diabetes 41:97–101

    PubMed  Article  CAS  Google Scholar 

  49. Fitze PS, Tschirren B, Gasparini J, Richner H (2007) Carotenoid-based plumage colors and immune function: is there a trade-off for rare carotenoids? Am Nat 169:137–144

    Google Scholar 

  50. Fleishman LJ, Loew ER, Leal M (1993) Ultraviolet vision in lizards. Nature 365:397

    Article  Google Scholar 

  51. Fox DL (1979) Biochromy, natural coloration of living things. University of California Press, Berkeley

    Google Scholar 

  52. French SS, DeNardo DF, Moore MC (2007) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170:79–89

    PubMed  Google Scholar 

  53. Galván I, Alonso-Alvarez C (2008) An intracellular antioxidant determines the expression of a melanin-based signal in a bird. PLoS One 3:e3335

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Galván I, Alonso-Alvarez C (2009) The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc R Soc Lond B 276:3089–3097

    Article  CAS  Google Scholar 

  55. Galván I, Alonso-Alvarez C (2010) Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism? J Exp Biol 213:3127–3130

    PubMed  Article  CAS  Google Scholar 

  56. Galván I, Solano F (2009) The evolution of eu-and pheomelanic traits may respond to an economy of pigments related to environmental oxidative stress. Pigm cell. Melanoma Res 22:339–342

    Article  CAS  Google Scholar 

  57. Galván I, Solano F (2015) Melanin chemistry and the ecology of stress. Physiol Biochem Zool 88:352–355

    PubMed  Article  Google Scholar 

  58. Garant D, Sheldon BC, Gustafsson L (2004) Climatic and temporal effects on the expression of secondary sexual characters: genetic and environmental components. Evolution 58:634–644

    PubMed  Article  Google Scholar 

  59. Garbe A, Buck J, Hämmerling U (1992) Retinoids are important cofactors in T cell activation. J Exp Med 176:109–117

    PubMed  Article  CAS  Google Scholar 

  60. Geissmann F, Revy P, Brousse N, Lepelletier Y, Folli C, Durandy A, Chambon P, Dy M (2003) Retinoids regulate survival and antigen presentation by immature dendritic cells. J Exp Med 198:623–634

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Annu Rev Nutr 6:273–297

    PubMed  Article  CAS  Google Scholar 

  62. Grether GF, Kolluru GR, Nersissian K (2004) Individual colour patches as multicomponent signals. Biol Rev 79:583–610

    PubMed  Article  Google Scholar 

  63. Grill CP, Rush VN (2000) Analysing spectral data: comparison and application of two techniques. Biol J Linn Soc 69:121–138

    Article  Google Scholar 

  64. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  65. Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    PubMed  Article  Google Scholar 

  66. Hegyi G, Török J, Garamszegi LZ, Rosivall B, Szöllősi E, Hargitai R (2007) Dynamics of multiple sexual signals in relation to climatic conditions. Evol Ecol Res 9:905–920

    Google Scholar 

  67. Hong JH, Kim M-J, Park MR, Kwag OG, Lee IS, Byun BH, Leef SC, Leeg KB, Rhee SJ (2004) Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta 340:107–115

    PubMed  Article  CAS  Google Scholar 

  68. Hõrak P, Zilmer M, Saks L, Ots I, Karu U, Zilmer K (2006) Antioxidant protection, carotenoids and the costs of immune challenge in greenfinches. J Exp Biol 209:4329–4338

    PubMed  Article  CAS  Google Scholar 

  69. Huang Q-H, Hruby VJ, Tatro JB (1999) Role of central melanocortins in endotoxin-induced anorexia. Am J Physiol-Reg I 276:864–871

    Google Scholar 

  70. Husvéth F, Manilla HA, Gaál T, Vajdovich P, Balogh N, Wágner L, Lóth I, Németh K (2000) Effects of saturated and unsaturated fats with vitamin E supplementation on the antioxidant status of broiler chicken tissues. Acta Veter Hung 48:69–79

    Article  Google Scholar 

  71. Ibáñez A, Polo-Cavia N, López P, Martín J (2014) Honest sexual signaling in turtles: experimental evidence of a trade-off between immune response and coloration in red-eared sliders Trachemys scripta elegans. Naturwissenschaften 101:803–811

    PubMed  Article  CAS  Google Scholar 

  72. Jacot A, Romero-Diaz C, Tschirren B, Richner H, Fitze PS (2010) Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major). Am Nat 176:55–62

    PubMed  Article  Google Scholar 

  73. Jacquin L, Lenouvel P, Haussy C, Ducatez S, Gasparini J (2011) Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba livia. J Avian Biol 42:11–15

    Article  Google Scholar 

  74. Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology. The immune system in health and disease, 5th edn. Garland Publishing, New York

    Google Scholar 

  75. Ji LL (1999) Antioxidants and oxidative stress in exercise. Exp Biol Med 222:283–292

    Article  CAS  Google Scholar 

  76. Kahn AT, Dolstra T, Jennions MD, Backwell PR (2013) Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav Ecol 24:906–913

    Article  Google Scholar 

  77. Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168–183

    PubMed  Article  Google Scholar 

  78. Kimball BA, Opiekun M, Yamazaki K, Beauchamp GK (2014) Immunization alters body odor. Physiol Behav 128:80–85

    PubMed  Article  CAS  Google Scholar 

  79. Klukowski M, Nelson CE (2001) Ectoparasite loads in free-ranging northern fence lizards, Sceloporus undulatus hyacinthinus: effects of testosterone and sex. Behav Ecol Sociobiol 49:289–295

    Article  Google Scholar 

  80. Kopena R, Martín J, López P, Herczeg G (2011) Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6:e19410

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Kopena R, López P, Martín J (2014a) Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav Ecol Sociobiol 68:571–581

    Article  Google Scholar 

  82. Kopena R, López P, Martín J (2014b) What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards. Naturwissenschaften 101:1107–1114

    PubMed  Article  CAS  Google Scholar 

  83. Krinsky NI, Yeum KJ (2003) Carotenoid–radical interactions. Biochem Biophys Res Commun 305:754–760

    PubMed  Article  CAS  Google Scholar 

  84. Lewis AC, Rankin KJ, Pask AJ, Stuart-Fox D (2017) Stress-induced changes in color expression mediated by iridophores in a polymorphic lizard. Ecol Evol 7:8262–8272

  85. Ligon RA, McCartney KL (2016) Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Curr Zool 62:237–252

    PubMed  PubMed Central  Article  Google Scholar 

  86. Lin SM, Nieves-Puigdoller K, Brown AC, McGraw KJ, Clotfelter ED (2010) Testing the carotenoid trade-off hypothesis in the polychromatic midas cichlid, Amphilophus citrinellus. Physiol Biochem Zool 83:333–342

    PubMed  Article  CAS  Google Scholar 

  87. Loew ER, Fleishman LJ, Foster RG, Provencio I (2002) Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol 205:927–938

    PubMed  Google Scholar 

  88. López P, Martín J (2006) Lipids in the femoral gland secretions of male Schreiber’s green lizards, Lacerta schreiberi. Z Naturforsch C 61:763–768

    PubMed  Article  Google Scholar 

  89. López P, Amo L, Martín J (2006) Reliable signaling by chemical cues of male traits and health state in male lizards, Lacerta monticola. J Chem Ecol 32:473–488

    PubMed  Article  CAS  Google Scholar 

  90. López P, Gabirot M, Martín J (2009a) Immune challenge affects sexual coloration of male Iberian wall lizards. J Exp Zool A 311:96–104

    Article  Google Scholar 

  91. López P, Gabirot M, Martín J (2009b) Immune activation affects chemical sexual ornaments of male Iberian wall lizards. Naturwissenschaften 96:65–69

    PubMed  Article  CAS  Google Scholar 

  92. Loyau A, Saint Jalme M, Cagniant C, Sorci G (2005) Multiple sexual advertisements honestly reflect health status in peacocks (Pavo cristatus). Behav Ecol Sociobiol 58:552–557

    Article  Google Scholar 

  93. Mackintosh JA (2001) The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol 211:101–113

    PubMed  Article  CAS  Google Scholar 

  94. Mader DR (1996) Reptile medicine and surgery. WB Saunders, Philadelphia

    Google Scholar 

  95. Martín J, López P (2006) Vitamin D supplementation increases the attractiveness of males’ scent for female Iberian rock lizards. Proc R Soc Lond B 273:2619–2624

    Article  CAS  Google Scholar 

  96. Martín J, López P (2009) Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behav Ecol Sociobiol 63:1743–1755

    Article  Google Scholar 

  97. Martín J, López P (2010) Multimodal sexual signals in male ocellated lizards Lacerta lepida: vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97:545–553

    PubMed  Article  CAS  Google Scholar 

  98. Martin M, Le Galliard JF, Meylan S, Loew ER (2015) The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J Exp Biol 218:458–465

    PubMed  Article  Google Scholar 

  99. Maynard-Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  100. McGraw KJ (2008) An update on the honesty of melanin-based color signals in birds. Pigm cell. Melanoma Res 21:133–138

    Article  Google Scholar 

  101. McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  102. McGraw KJ, Crino OL, Medina-Jerez W, Nolan PM (2006a) Effect of dietary carotenoid supplementation on food intake and immune function in a songbird with no carotenoid coloration. Ethology 112:1209–1216

    Article  Google Scholar 

  103. McGraw KJ, Klasing KC, Dufty AM (2006b) Carotenoids, immunity, and integumentary coloration in red junglefowl (Gallus gallus). Auk 123:1161–1171

    Google Scholar 

  104. Megía-Palma R (2016) Molecular characterization of lizard parasites and their influence on colour ornaments. Universidad Complutense de Madrid, Madrid, PhD Dissertation

    Google Scholar 

  105. Megía-Palma R, Martínez J, Merino S (2016a) A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species. Sci Nat 103:1–10

    Article  CAS  Google Scholar 

  106. Megía-Palma R, Martínez J, Merino S (2016b) Structural- and carotenoid-based throat colour patches in males of Lacerta schreiberi reflect different parasitic diseases. Behav Ecol Sociobiol 70:2017–2025

    Article  Google Scholar 

  107. Megía-PalmaR, MartínezJ, MerinoS (2017) Manipulation of parasite load induces significant changes in the structural-based throat color of male Iberian green lizards. Curr Zool: 1–10. https://doi.org/10.1093/cz/zox036

  108. Mohagheghpour N, Waleh N, Garger SJ, Dousman L, Grill LK, Tusé D (2000) Synthetic melanin suppresses production of proinflammatory cytokines. Cell Immunol 199:25–36

    PubMed  Article  CAS  Google Scholar 

  109. Molnár O, Bajer K, Török J, Herczeg G (2012) Individual quality and nuptial throat colour in male European green lizards. J Zool 287:233–239

    Article  Google Scholar 

  110. Molnár O, Bajer K, Mészáros B, Török J, Herczeg G (2013) Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton–Zuk hypothesis. Naturwissenschaften 100:551–558

    PubMed  Article  CAS  Google Scholar 

  111. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    PubMed  Article  Google Scholar 

  112. Montgomerie R (2006) Analyzing colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol. 1. Mechanisms and measurements. Harvard University Press, Cambridge, pp 90–147

    Google Scholar 

  113. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    PubMed  Article  CAS  Google Scholar 

  114. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. P Natl Acad Sci USA 97:8841–8848

    Article  CAS  Google Scholar 

  115. Navara KJ, Hill GE (2003) Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav Ecol 14:909–916

    Article  Google Scholar 

  116. Niki E, Tsuchiya J, Tanimura R, Kamiya Y (1982) Regeneration of vitamin E from α-chromanoxyl radical by glutathione and vitamin C. Chem Lett 11:789–792

    Article  Google Scholar 

  117. Olsson M, Wapstra E, Madsen T, Silverin B (2000) Testosterone, ticks and travels: a test of the immunocompetence-handicap hypothesis in free-ranging male sand lizards. Proc R Soc Lond B 267:2339–2343

    Article  CAS  Google Scholar 

  118. Olsson MJ, Lundström JN, Kimball BA et al (2014) The scent of disease human body odor contains an early chemosensory cue of sickness. Psychol Sci 25:817–823

    PubMed  Article  Google Scholar 

  119. Ortonne JP (2002) Photoprotective properties of skin melanin. Brit J Dermatol 146:7–10

    Article  CAS  Google Scholar 

  120. Palozza P (1998) Prooxidant actions of carotenoids in biologic systems. Nutr Rev 56:257–265

    PubMed  Article  CAS  Google Scholar 

  121. Pearson AK, Tsui HW, Licht P (1976) Effect of temperature on spermatogenesis, on the production and action of androgens and on the ultrastructure of gonadotropic cells in the lizard Anolis carolinensis. J Exp Zool A 195:291–303

    Article  CAS  Google Scholar 

  122. Prota G (2012) Melanins and melanogenesis. Academic Press, San Diego

    Google Scholar 

  123. Quinn VS, Hews DK Positive relationship between abdominal coloration and dermal melanin density in phrynosomatid lizards. Copeia 2003, 2003:858–864

  124. Reguera S, Zamora-Camacho FJ, Moreno-Rueda G (2014) The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol J Linn Soc 112:132–141

    Article  Google Scholar 

  125. Rohrlich S (1974) Fine structural demonstration of ordered arrays of cytoplasmic filaments in vertebrate iridophores. J Cell Biol 62:295–304

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. Rojas C, Cadenas S, Lopez-Torres M, PerezCampo R, Barja G (1996) Increase in heart glutathione redox ratio and total antioxidant capacity and decrease in lipid peroxidation after vitamin E dietary supplementation in guinea pigs. Free Radic Biol Med 21:907–915

    PubMed  Article  CAS  Google Scholar 

  127. Ruiz M, Wang D, Reinke BA, Demas GE, Martins EP (2011) Trade-offs between reproductive coloration and innate immunity in a natural population of female sagebrush lizards, Sceloporus graciosus. Herpetol J 21:131–134

    PubMed  PubMed Central  Google Scholar 

  128. Saenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC (2013) Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol 11:105

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. San-Jose LM, Granado-Lorencio F, Sinervo B, Fitze PS (2013) Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am Nat 181:396–409

    PubMed  Article  Google Scholar 

  130. Santos ES, Scheck D, Nakagawa S (2011) Dominance and plumage traits: meta-analysis and metaregression analysis. Anim Behav 82:3–19

    Article  Google Scholar 

  131. Sasaki M, Horikoshi T, Uchiwa H, Miyachi Y (2000) Up-regulation of tyrosinase gene by nitric oxide in human melanocytes. Pigment Cell Res 13:248–252

    PubMed  Article  CAS  Google Scholar 

  132. Seagle B-LL, Rezai KA, Kobori Y, Gasyna EM, Rezaei KA, Norris JR (2005) Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. P Natl Acad Sci USA 102:8978–8983

    Article  CAS  Google Scholar 

  133. Searcy WA, Nowicki S (2005) The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton

    Google Scholar 

  134. Selman C, McLaren JS, Himanka MJ, Speakman JR (2000) Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radic Biol Med 28:1279–1285

    PubMed  Article  CAS  Google Scholar 

  135. Sergeyev V, Broberger C, Hökfelt T (2001) Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Mol Brain Res 90:93–100

    PubMed  Article  CAS  Google Scholar 

  136. Shawkey MD, Hill GE (2005) Carotenoids need structural colours to shine. Biol Lett 1:121–124

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    PubMed  Article  CAS  Google Scholar 

  138. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WHFreeman, New York

    Google Scholar 

  139. Solano F, García-Borrón JC (2006) Enzymology of melanin formation. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne JP (eds) The pigmentary system: physiology and pathophysiology, 2nd edn. Blackwell, Oxford, pp 261–281

  140. Staszewski V, Boulinier T (2004) Vaccination: a way to address questions in behavioral and population ecology? Trends Parasitol 20:17–22

    PubMed  Article  Google Scholar 

  141. Surai PF (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  142. Sutherland JL, Thompson CF, Sakaluk SK (2012) No effect of carotenoid supplementation on phytohemagglutinin response or body condition of nestling house wrens. Physiol Biochem Zool 85:21–28

    PubMed  Article  CAS  Google Scholar 

  143. Toomey MB, Butler MW, McGraw KJ (2010) Immune-system activation depletes retinal carotenoids in house finches (Carpodacus mexicanus). J Exp Biol 213:1709–1716

    PubMed  Article  CAS  Google Scholar 

  144. Torres R, Velando A (2007) Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby. J Anim Ecol 76:1161–1168

    PubMed  Article  Google Scholar 

  145. Tsatmali M, Graham A, Szatkowski D, Ancans J, Manning P, McNeil CJ, Graham AM, Thody AJ (2000) α-melanocyte-stimulating hormone modulates nitric oxide production in melanocytes. J Invest Dermatol 114:520–526

    PubMed  Article  CAS  Google Scholar 

  146. Uller T, Isaksson C, Olsson M (2006) Immune challenge reduces reproductive output and growth in a lizard. Funct Ecol 20:873–879

    Article  Google Scholar 

  147. Umeda F, Kato K, Muta K, Ibayashi H (1982) Effect of vitamin E on function of pituitary-gonadal axis in male rats and human subjects. Endocrinol Jpn 29:287–292

    PubMed  Article  CAS  Google Scholar 

  148. Vroonen J, Vervust B, Van Damme R (2013) Melanin-based colouration as a potential indicator of male quality in the lizard Zootoca vivipara (Squamata: Lacertidae). Amphibia-Reptilia 34:539–549

    Article  Google Scholar 

  149. Wedekind C (1992) Detailed information about parasites revealed by sexual ornamentation. Proc R Soc Lond B 247:169–174

    Article  Google Scholar 

  150. Wedekind C, Folstad I (1994) Adaptive or nonadaptive immunosuppression by sex hormones? Am Nat 143:936–938

    Article  Google Scholar 

  151. Wu D, Meydani SN (1998) N-3 polyunsaturated fatty acids and immune function. Proc Nutr Soc 57:503–509

    PubMed  Article  CAS  Google Scholar 

  152. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  Article  CAS  Google Scholar 

  153. Yoshida M, Takahashi Y, Inoue S (2000) Histamine induces melanogenesis and morphologic changes by protein kinase a activation via H2 receptors in human normal melanocytes. J Invest Dermatol 114:334–342

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank four anonymous reviewers for helpful comments and “El Ventorrillo” MNCN Field Station for use of their facilities.

Funding

Financial support was provided by the Spanish’s Ministerio de Economía y Competitividad projects MICIIN-CGL2011-24150/BOS and MINECO CGL2014-53523-P and a JAE-pre-grant to RK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Martín.

Ethics declarations

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Captures and experiments were performed under license (Ref. 10/016732.9/13) from the Environmental Agency of Madrid Government (“Consejería del Medio Ambiente y Ordenación del Territorio de la Comunidad de Madrid”, Spain).

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. J. Downes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopena, R., López, P. & Martín, J. Immune challenged male Iberian green lizards may increase the expression of some sexual signals if they have supplementary vitamin E. Behav Ecol Sociobiol 71, 173 (2017). https://doi.org/10.1007/s00265-017-2401-6

Download citation

Keywords

  • Carotenoids
  • Coloration
  • Chemical signals
  • Immune system
  • Lizards
  • Melanin