The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei

Abstract

Colony size is an important predictor of annual survival and reproduction in social insects. By tracking monthly forager turn over, we measured the size-specific production rates necessary to counteract forager mortality in wild Veromessor pergandei colonies. Between 31,180 and 237,980 individuals appeared as foragers annually, representing an eightfold difference in production between neighboring nests. Highly productive colonies housed 26,000 foragers at one time, turned over 34,000 foragers in a single month, and produced 470 g of worker biomass during the year. Each forager population turned over approximately 20 times during the year, cumulatively returning 3.4 kg of biomass per hectare (with 14 nests per hectare). Forager longevity was not influenced by forager number, season, or pressure from neighboring conspecifics. Genotyping at three microsatellite loci revealed that all colonies contained a single queen and one to seven patrilines (mean m observed = 3.8; m e  = 2.56). The most productive colonies had significantly fewer patrilines, a larger peak forager population, and a larger annual foraging range. Colonies varied in their ability to replace lost workers, adding anywhere from 2 to 42 new foragers per death during peak forager allocation. Seasonal increases in forager population size corresponded to decreases in worker body size, suggesting a trade-off during production earlier in the year. Together, these findings demonstrate how the combination of individual colony-member characteristics influence whole colony survival across multiple years.

Significance statement

The survival of an animal society can depend on its size and stability. We measured the seasonal relationships between mortality and production of new colony members, with respect to foraging range size, paternity, neighbor pressure, and body size in a desert seed harvesting ant. Mortality rate was stable across seasons, but the ability of colonies to replace dead individuals corresponded to increased foraging range size, decreased patriline number, and seasonal decreases in body size. Our findings reveal the characteristics that allow colonies to respond to worker mortality on an annual scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adams ES (2016) Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol News 23:101–118

    Google Scholar 

  2. Bailey NTJ (1952) Improvements in the interpretation of recapture data. J Anim Ecol 21:120–127. doi:10.2307/1913

    Article  Google Scholar 

  3. Boulay R, Arnan X, Cerdá X, Retana J (2014) The ecological benefits of larger colony size may promote polygyny in ants. J Exp Biol 27:2856–2863. doi:10.1111/jeb.12515

    CAS  Google Scholar 

  4. Cerdá X, Dahbi A, Retana J (2002) Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert ant. Ecolo Entomol 27:7–15. doi:10.1046/j.0307-6946.2001.00386.x

    Article  Google Scholar 

  5. Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science (Washington, DC) 285:891-893 doi: doi:10.1126/science.285.5429.891

  6. Cole BJ, Wiernasz DC (2000) Colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. Insect Soc 47:249–255. doi:10.1007/PL00001711

    Article  Google Scholar 

  7. Cook JM, Crozier RH (1995) Sex determination and population biology in the hymenoptera. Trends Ecol Evol 10:281–286

    CAS  Article  PubMed  Google Scholar 

  8. Davidson DW (1978) Size variability in the worker caste of a social insect (Veromessor pergandei Mayr) as a function of the competitive environment. Am Nat 112:523–532. doi:10.1086/283294

    Article  Google Scholar 

  9. Elmes GW (1987) Temporal variation in colony populations of the ant Myrmica sulcinodis. Ii. Sexual production and sex ratios. J Anim Ecol 56:573–583

    Article  Google Scholar 

  10. Fewell JH, Harrison JF (2016) Scaling of work and energy use in social insect colonies. Behav Ecol Sociobiol 70:1047–1061. doi:10.1007/s00265-016-2097-z

    Article  Google Scholar 

  11. Fletcher DJC, Blum MS, Whitt TV, Temple N (1980) Monogyny and polygyny in the fire ant, Solenopsis invicta. Ann Entomol Soc Am 73:658–661

    Article  Google Scholar 

  12. Fowler HG (1986) Polymorphism and colony ontogeny in North American carpenter ants (Hymenoptera: Formicidae: Camponotus pennsylvanicus and Camponotus ferrugineus). Zool Jahrb Abt Allg Zool Physiol Tiere 90:297–316

    Google Scholar 

  13. Franks NR, Tofts C (1994) Foraging for work: how tasks allocate workers. Anim Behav 48:470–472

    Article  Google Scholar 

  14. Genolini C, Falissard B (2011) Kml: a package to cluster longitudinal data. Comput Methods Prog Biomed 104:e112–e121. doi:10.1016/j.cmpb.2011.05.008

    Article  Google Scholar 

  15. Gentry JB (1974) Response to predation by colonies of the Florida harvester ant, Pogonomyrmex badius. Ecology 55:1328–1338

    Article  Google Scholar 

  16. Giraldo YM, Traniello JFA (2014) Worker senescence and the sociobiology of aging in ants. Behav Ecol Sociobiol 68:1901–1919. doi:10.1007/s00265-014-1826-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giraldo YM et al (2016) Lifespan behavioural and neural resilience in a social insect. Proc R Soc Lond [Biol] 283. doi:10.1098/rspb.2015.2603

  18. Gordon SH (1978) Food and foraging ecology of a desert harvester ant, Veromessor pergandei (Mayr). Dissertation, UC Berkeley

  19. Helms Cahan S (2001) Ecological variation across a transition in colony-founding behavior in the ant Messor pergandei. Oecol 129:629–635. doi:10.1007/s004420100761

    Article  Google Scholar 

  20. Helms KR, Helms Cahan S (2012) Large-scale regional variation in cooperation and conflict among queens of the desert ant Messor pergandei. Anim Behav 84:499–507. doi:10.1016/j.anbehav.2012.05.019

    Article  Google Scholar 

  21. Hölldobler B (1986) Food robbing in ants, a form of interference competition. Oecolo 69:12–15. doi:10.1007/BF00399031

    Article  Google Scholar 

  22. Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210:732–739. doi:10.1126/science.210.4471.732

    Article  PubMed  Google Scholar 

  23. Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Sci Nat 64:8–15. doi:10.1007/BF00439886

    Article  Google Scholar 

  24. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  25. Hughes WOH, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Nat Acad Sci 100:9394–9397. doi:10.1073/pnas.1633701100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Johnson RA (2006a) Capital and income breeding and the evolution of colony founding strategies in ants. Insect Soc 53:316–322. doi:10.1007/s00040-006-0874-9

  27. Johnson RA (2006b) Biogeographical parallels between plants and ants in North American deserts (Hymenoptera: Formicidae; Spermatophyta). Myrmecol Nachr 8:209–218

  28. Johnson RA, Kaiser A, Quinlan M, Sharp W (2011) Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei. J Exp Biol 214:3495–3506. doi:10.1242/jeb.054304

    Article  PubMed  Google Scholar 

  29. Johnston AB, Wilson EO (1985) Correlates of variation in major/minor ratio in the ant, Pheidole dentata (Hymenoptera: Formicidae). Ann Entomol Soc Am 78:8–11

    Article  Google Scholar 

  30. Keeler KH (1993) Fifteen years of colony dynamics in Pogonomyrmex occidentalis, the western harvester ant, in western Nebraska. Southwest Nat 38:286–289. doi:10.2307/3671438

    Article  Google Scholar 

  31. Kramer BH, Schrempf A, Scheuerlein A, Heinze J (2015) Ant colonies do not trade-off reproduction against maintenance. PLoS One 10:e0137969. doi:10.1371/journal.pone.0137969

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kwapich CL, Tschinkel WR (2013) Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 67:2011–2027. doi:10.1007/s00265-013-1611-9

    Article  Google Scholar 

  33. Kwapich CL, Tschinkel WR (2016) Limited flexibility and unusual longevity shape forager allocation in the Florida harvester ant (Pogonomyrmex badius). Behavl Ecol Sociobiol 70:221–235. doi:10.1007/s00265-015-2039-1

    Article  Google Scholar 

  34. Lincoln FC (1930) Calculating waterfowl abundance on the basis of banding returns. USDA Circular 118:1–4

    Google Scholar 

  35. Macom TE, Porter SD (1996) Comparison of polygyne and monogyne red imported fire ants (Hymenoptera: Formicidae) population densities. Ann Entomol Soc Am 89:535–543

    Article  Google Scholar 

  36. Mercier B, Passera L, Suzzoni JP (1985) Étude De La Polygynie Chez La Fourmi Plagiolepis pygmaea Latr. (Hym. Formicidae) Ii. La Fécondité Des Reines En Condition Expérimentale Polygyne. Insect Soc 32:349–362. doi:10.1007/BF02224013

    Article  Google Scholar 

  37. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093. doi:10.1126/science.1234316

    CAS  Article  PubMed  Google Scholar 

  38. Moilanen A, Sundström L, Pedersen J (2004) Matesoft: a program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Mol Ecol Notes 4:795–797

    Article  Google Scholar 

  39. Ode PJ, Rissing SW (2002) Resource abundance and sex allocation by queen and workers in the harvester ant, Messor pergandei. Behav Ecol Sociobiol 51:548–556. doi:10.1007/s00265-002-0462-6

    Article  Google Scholar 

  40. Plowes N, Johnson R, Hölldobler B (2013) Foraging behavior in the ant genus Messor (Hymenoptera: Formicidae: Myrmicinae). Myrmecol News 18:33–49

    Google Scholar 

  41. Pollock GB, Rissing SW (1985) Mating season and colony foundation of the seed-harvester ant, Veromessor pergandei. Psyche 92:125–134. doi:10.1155/1985/87410

    Article  Google Scholar 

  42. Porter SD, Jorgensen CD (1980) Recapture studies of the harvester ant, Pogonomyrmex Owyheei Cole, using a fluorescent marking technique. Ecol Entomol 5:263–269. doi:10.1111/j.1365-2311.1980.tb01149.x

    Article  Google Scholar 

  43. Rissing SW (1987) Annual cycles in worker size of the seed-harvester ant Veromessor pergandei (Hymenoptera: Formicidae). Behav Ecol Sociobiol 20:117–124. doi:10.1007/BF00572633

    Article  Google Scholar 

  44. Rissing SW, Pollock GB (1984) Worker size variability and foraging efficiency in Veromessor pergandei (Hymenoptera: Formicidae). Behav Ecol Sociobiol 15:121–126. doi:10.1007/bf00299379

    Article  Google Scholar 

  45. Schmid-Hempel P (1982) Foraging ecology and colony structure of two sympatric species of desert ants, Cataglyphis bicolor and Cataglyphis albicans. Doctoral Dissertation, Universität Zürich

  46. Schmid-Hempel P, Schmid-Hempel R (1984) Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect Soc 31:345–360. doi:10.1007/BF02223652

    Article  Google Scholar 

  47. Shik JZ (2008) Ant colony size and the scaling of reproductive effort. Funct Ecol 22:674–681. doi:10.1111/j.1365-2435.2008.01428.x

    Article  Google Scholar 

  48. Simone-Finstrom M, Walz M, Tarpy DR (2016) Genetic diversity confers colony-level benefits due to individual immunity. Biol Lett 12:20151007. doi:10.1098/rsbl.2015.1007

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith CR, Tschinkel WR (2006) The sociometry and sociogenesis of reproduction in the Florida harvester ant, Pogonomyrmex badius. J Insect Sci 6:1–11. doi:10.1673/2006_06_32.1

    CAS  Article  PubMed  Google Scholar 

  50. Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV (2008) Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am Nat 172:497–507. doi:10.1086/590961

    CAS  Article  PubMed  Google Scholar 

  51. Smith ML, Ostwald MM, Loftus JC, Seeley TD (2014) A critical number of workers in a honeybee colony triggers investment in reproduction. Sci Nat 101:783–790. doi:10.1007/s00114-014-1215-x

    CAS  Article  Google Scholar 

  52. Tschinkel WR (1988a) Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 22:103–115. doi:10.1007/BF00303545

    Article  Google Scholar 

  53. Tschinkel WR, Porter S (1988) Efficiency of sperm use in queens of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Ann Entomol Soc Am 81:777–781

  54. Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 64:425–457

    Article  Google Scholar 

  55. Tschinkel WR (2006) The fire ants. In. Harvard University Press, Cambridge, p 747. 716 p. of plates

  56. Tschinkel WR (2011) The organization of foraging in the fire ant, Solenopsis invicta. J Insect Sci 11:26. doi:10.1673/031.011.0126

    PubMed  PubMed Central  Google Scholar 

  57. Tschinkel WR (2017) Lifespan, age, size-specific mortality and dispersion of colonies of the Florida harvester ant, Pogonomyrmex badius. Insect Soc 64:285–296. doi:10.1007/s00040-017-0544-0

    Article  Google Scholar 

  58. Tschinkel WR, Adams ES, Macom T (1995) Territory area and colony size in the fire ant, Solenopsis invicta. J Anim Ecol 64:473–480

    Article  Google Scholar 

  59. Went FW, Wheeler J, Wheeler GC (1972) Feeding and digestion in some ants (Veromessor and Manica). Bioscience 22:82–88

    Article  Google Scholar 

  60. Wheeler J, Rissing SW (1975) Natural history of Veromessor pergandei. II. Behavior (Hymenoptera: Formicidae). Pan-Pac Entomol 51:303–314

    Google Scholar 

  61. Wheeler, Wheeler (1976) Ant larvae: review and synthesis vol 7. Memoirs of the entomological society of Washington. Entomological Society of Washington, Washington, D.C.

    Google Scholar 

  62. Wiernasz DC, Cole BJ (1995) Spatial distribution of Pogonomyrmex occidentalis: recruitment, mortality and overdispersion. J Anim Ecol 64:519–527. doi:10.2307/5654

    Article  Google Scholar 

  63. Wiernasz DC, Hines J, Parker DG, Cole BJ (2008) Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Molec Ecol 17:1137–1144. doi:10.1111/j.1365-294X.2007.03646.x

    Article  Google Scholar 

  64. William OHH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    Article  Google Scholar 

  65. Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) iii. Ergonomic resiliency in foraging by Atta cephalotes. Behav Ecol Sociobiol 14:47–54. doi:10.1007/BF00366655

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Yocha DeChavez for her tireless and careful assistance in the laboratory and field and Scott Bingham for his support at the ASU DNA core facility. We are also grateful for the thoughtful discussions and advice from Robert A. Johnson, Walter Tschinkel, Ti Ericksson, Erick Lundgren, the Social Insect Research Group at ASU, and two anonymous reviewers. This study was made possible with permission from South Mountain Regional Park, Phoenix, AZ.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christina L. Kwapich.

Additional information

Communicated by O. Rueppell

Electronic supplementary material

ESM 1

Example of counting procedure for each forager sample (PNG 739 kb)

ESM 2

Example of counting procedure of marked foragers recatured after 24 h, pictured under UV light (PNG 3514 kb)

ESM 3

Analysis of size free changes in allocation between months revealed three main foraging trajectories. Colonies with high variation in forager number between months, greater average annual production, larger annual foraging range size fell into cluster A (Vp29,24,199,28), or cluster B (Vp25,200), depending on timing of peak forager allocation. Cluster C was defined by low variation between months, and smaller annual foraging range (Vp23, 30). (PNG 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwapich, C.L., Gadau, J. & Hölldobler, B. The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei . Behav Ecol Sociobiol 71, 110 (2017). https://doi.org/10.1007/s00265-017-2333-1

Download citation

Keywords

  • Colony size
  • Worker production
  • Patriline number
  • Ant biomass
  • Mortality rate