Skip to main content

Paternity success depends on male genetic characteristics in the terrestrial isopod Armadillidium vulgare

Abstract

Mate choice for compatible partners has been gaining interest during the past years, which implies that what represents a suitable male varies between females and that genetic diversity in offspring should be increased. In this context, mechanisms of mate choice for heterozygous and/or genetically dissimilar partners can be expected. To test for the presence of such mechanisms in the gregarious crustacean Armadillidium vulgare, we performed experimental crosses allowing a female to reproduce with two males. More heterozygous males had a higher paternity success whatever the number of males (only one or both males) participating in reproduction, which could result from better competing abilities or from female preference for such males. When only one male fathered a brood, this male was the most genetically dissimilar to the female, suggesting the existence of a female choice for dissimilarity. Additionally, the more genetically similar both males were to the female, the fewer offspring were produced per brood. Genetic diversity is thus likely to be involved in both pre- and post-copulatory processes, as well as to have an impact on fitness in this terrestrial isopod. This work improves our understanding of the genetic characteristics involved in mating behaviours, and provides insights on the mechanisms at the basis of genetic diversity maintenance.

Significance statement

Amongst the many parameters that can be taken into account during mate choice, genetic characteristics must not be neglected, as more and more studies highlight that what is best for one female may not be best for another. Here, we show that both heterozygosity and genetic similarity can influence paternity success in a gregarious terrestrial isopod. This could have strong implications in terms of fitness as a high genetic similarity has a negative impact on offspring number in this species. This work reflects the growing interest for genetic variables, and is positioned at the interface between molecular biology and behavioural ecology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agresti A (2002) Categorical data analysis. John Wiley & Sons, Inc., New Jersey

    Book  Google Scholar 

  2. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    CAS  Article  PubMed  Google Scholar 

  3. Beauche F, Richard FJ (2013) The best timing of mate mearch in Armadillidium vulgare (Isopoda, Oniscidea). PLoS One 8:e57737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Beltran S, Cezilly F, Boissier J (2008) Genetic dissimilarity between mates, but not male heterozygosity, influences divorce in Schistosomes. PLoS One 3:e3328

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc B-Biol Sci 265:1081–1090

    CAS  Article  Google Scholar 

  6. Bretman A, Wedell N, Tregenza T (2004) Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc R Soc B-Biol Sci 271:159–164

    CAS  Article  Google Scholar 

  7. Brown JL (1997) A theory of mate choice based on heterozygosity. Behav Ecol 8:60–65

    Article  Google Scholar 

  8. Bull CM, Cooper SJB (1999) Relatedness and avoidance of inbreeding in the lizard, Tiliqua rugosa. Behav Ecol Sociobiol 46:367–372

    Article  Google Scholar 

  9. Charlesworth D, Willis JH (2009) Fundamental concepts in genetics: the genetics of inbreeding depression. Nat Rev Genet 10:783–796

    CAS  Article  PubMed  Google Scholar 

  10. Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    CAS  Article  PubMed  Google Scholar 

  11. Cotelli F, Ferraguti M, Lanzavecchia G, Loralamiadonin C (1976) Spermatozoon of Peracarida. 1. Spermatozoon of terrestrial isopods. J Ultrastruct Res 55:378–390

    CAS  Article  PubMed  Google Scholar 

  12. Durand S, Beauché F, Richard F-J, Beltran-Bech S (2015) How do females’ genetic characteristics influence male mate preference in the terrestrial isopod Armadillidium vulgare? Ethology 121:1122–1130

    Article  Google Scholar 

  13. Fisher RA (1915) The evolution of sexual preference. The Eugenics Review 7:184

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  15. Fitzpatrick JL, Evans JP (2014) Postcopulatory inbreeding avoidance in guppies. J Evol Biol 27:2585–2594

    CAS  Article  PubMed  Google Scholar 

  16. Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425:714–717

    CAS  Article  PubMed  Google Scholar 

  17. Frasier TR, Gillett RM, Hamilton PK, Brown MW, Kraus SD, White BN (2013) Postcopulatory selection for dissimilar gametes maintains heterozygosity in the endangered North Atlantic right whale. Ecol Evol 3:3483–3494

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fromhage L, Kokko H, Reid JM (2009) Evolution of mate choice for genome-wide heterozygosity. Evolution 63:684–694

    CAS  Article  PubMed  Google Scholar 

  19. Gage MJG, Surridge AK, Tomkins JL, Green E, Wiskin L, Bell DJ, Hewitt GM (2006) Reduced heterozygosity depresses sperm quality in wild rabbits, Oryctolagus cuniculus. Curr Biol 16:612–617

    CAS  Article  PubMed  Google Scholar 

  20. Garcia-Gonzalez F, Simmons LW (2011) Good genes and sexual selection in dung beetles (Onthophagus taurus): genetic variance in egg-to-adult and adult viability. PLoS One 6:e16233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Navas V, Ortego J, Sanz JJ (2009) Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice. Proc R Soc B-Biol Sci 276:2931–2940

    Article  Google Scholar 

  22. Giraud I, Valette V, Bech N, Grandjean F, Cordaux R (2013) Isolation and characterization of microsatellite loci for the isopod crustacean Armadillidium vulgare and transferability in terrestrial isopods. PLoS One 8:e76639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  24. Hoffman JI, Forcada J, Trathan PN, Amos W (2007) Female fur seals show active choice for males that are heterozygous and unrelated. Nature 445:912–914

    CAS  Article  PubMed  Google Scholar 

  25. Hoglund J, Piertney SB, Alatalo RV, Lindell J, Lundberg A, Rintamaki PT (2002) Inbreeding depression and male fitness in black grouse. Proc R Soc B-Biol Sci 269:711–715

    Article  Google Scholar 

  26. Howard HW (1943) Length of life of sperms in the woodlouse Armadillidium vulgare Latr. Nature 152:331–331

    Article  Google Scholar 

  27. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, California, pp 371–393

    Google Scholar 

  28. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    CAS  Article  PubMed  Google Scholar 

  29. Jin K, Ho HN, Speed TP, Gill TJ (1995) Reproductive failure and the major histocompatibility complex. Am J Hum Genet 56:1456–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamiya T, O’Dwyer K, Westerdahl H, Senior A, Nakagawa S (2014) A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol Ecol 23:5151–5163

    CAS  Article  PubMed  Google Scholar 

  31. Karino K, Niiyama H, Chiba M (2005) Horn length is the determining factor in the outcomes of escalated fights among male Japanese horned beetles, Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). J Insect Behav 18:805–815

    Article  Google Scholar 

  32. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  33. Kempenaers B (2007) Mate choice and genetic quality: a review of the heterozygosity theory. In: Brockmann HJ, Roper TJ, Naguib M, Wynne Edwards KE, Barnard C, Mitani J (eds) Advances in the study of behavior, vol 37. Elsevier Academic Press Inc, San Diego, pp 189–278

    Google Scholar 

  34. Kight SL, Ozga M (2001) Costs of reproduction in the terrestrial isopod Porcellio laevis Latreille (Isopoda: Oniscidea): brood-bearing and locomotion. J Kans Entomol Soc 74:166–171

    Google Scholar 

  35. Kleinbaum DG, Klein M (2005) Survival analysis. Springer-Verlag, New York

    Google Scholar 

  36. Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948

    Article  PubMed  Google Scholar 

  37. Kvarnemo C, Ahnesjo I (1996) The dynamics of operational sex ratios and competition for mates. Trends Ecol Evol 11:404–408

    CAS  Article  PubMed  Google Scholar 

  38. Laloi D, Eizaguirre C, Federici P, Massot M (2011) Female choice for heterozygous mates changes along successive matings in a lizard. Behav Process 88:149–154

    Article  Google Scholar 

  39. Lefebvre F, Limousin M, Caubet Y (2000) Sexual dimorphism in the antennae of terrestrial isopods: a result of male contests or scramble competition? Can J Zool 78:1987–1993

    Article  Google Scholar 

  40. Lehmann L, Keller LF, Kokko H (2007) Mate choice evolution, dominance effects, and the maintenance of genetic variation. J Theor Biol 244:282–295

    CAS  Article  PubMed  Google Scholar 

  41. Lihoreau M, Zimmer C, Rivault C (2008) Mutual mate choice: when it pays both sexes to avoid inbreeding. PLoS One 3:e3365

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lovlie H, Gillingham MAF, Worley K, Pizzari T, Richardson DS (2013) Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc R Soc B-Biol Sci 280

  43. Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT, Pitnick S (2010) Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328:354–357

    CAS  Article  PubMed  Google Scholar 

  44. Mazerolles MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q) AIC (c). R package version 20–4 https://cran.r-project.org/package=AICcmodavg

  45. Mitton JB, Schuster WSF, Cothran EG, Defries JC (1993) Correlation between the individual heterozygosity of parents and their offspring. Heredity 71:59–63

    Article  PubMed  Google Scholar 

  46. Moreau J, Bertin A, Caubet Y, Rigaud T (2001) Sexual selection in an isopod with Wolbachia-induced sex reversal: males prefer real females. J Evol Biol 14:388–394

    Article  Google Scholar 

  47. Moreau J, Rigaud T (2000) Operational sex ratio in terrestrial isopods: interaction between potential rate of reproduction and Wolbachia-induced sex ratio distortion. Oikos 91:477–484

    Article  Google Scholar 

  48. Moreau J, Rigaud T (2002) The shape of calcium carbonate deposits as an external marker for female reproductive status in terrestrial isopods. J Crustac Biol 22:353–356

    Article  Google Scholar 

  49. Moreau J, Seguin S, Caubet Y, Rigaud T (2002) Female remating and sperm competition patterns in a terrestrial crustacean. Anim Behav 64:569–577

    Article  Google Scholar 

  50. Müller T, Müller C (2016) Consequences of mating with siblings and nonsiblings on the reproductive success in a leaf beetle. Ecol Evol 6:3185–3197

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14:19–38

    CAS  Article  PubMed  Google Scholar 

  52. Nietlisbach P, Hadfield JD (2015) Heritability of heterozygosity offers a new way of understanding why dominant gene action contributes to additive genetic variance. Evolution 69:1948–1952

    Article  PubMed  Google Scholar 

  53. Olsson M, Shine R, Madsen T, Gullberg A, Tegelstrom H (1996) Sperm selection by females. Nature 383:585–585

    CAS  Article  Google Scholar 

  54. Palumbi SR (1999) All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc Natl Acad Sci U S A 96:12632–12637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Pizzari T, Birkhead TR (2000) Female feral fowl eject sperm of subdominant males. Nature 405:787–789

    CAS  Article  PubMed  Google Scholar 

  56. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-projectorg/

  57. Rossiter SJ, Jones G, Ransome RD, Barratt EM (2001) Outbreeding increases offspring survival in wild greater horseshoe bats (Rhinolophus ferrumequinum). Proc R Soc B-Biol Sci 268:1055–1061

    CAS  Article  Google Scholar 

  58. Ryder TB, Tori WP, Blake JG, Loiselle BA, Parker PG (2010) Mate choice for genetic quality: a test of the heterozygosity and compatibility hypotheses in a lek-breeding bird. Behav Ecol 21:203–210

    Article  Google Scholar 

  59. Sillén-Tullberg B (1985) Relationship between rocking behaviour and copulation termination in Lygaeus equestris. Physiol Entomol 10:235–240

    Article  Google Scholar 

  60. Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection, and offspring viability. In: Annual review of ecology evolution and systematics. Annual Reviews, Palo Alto, pp 125–146

    Google Scholar 

  61. Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc B-Biol Sci 267:1657–1662

    CAS  Article  Google Scholar 

  62. Surbida KL, Wright JC (2001) Embryo tolerance and maternal control of the marsupial environment in Armadillidium vulgare (Isopoda: Oniscidea). Physiol Biochem Zool 74:894–906

    CAS  Article  PubMed  Google Scholar 

  63. Takeda N (1984) The aggregation phenomenon in terrestrial isopods. Symp Zool Soc Lond:381–404

  64. Therneau TM (2015) coxme: mixed effects cox models. R package version 22–4 http://cran.r-project.org/package=coxme

  65. Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    CAS  Article  PubMed  Google Scholar 

  66. Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73

    CAS  Article  PubMed  Google Scholar 

  67. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine, Chicago, IL, pp 136–179

    Google Scholar 

  68. Valette V, Durand S, Bech N, Grandjean F, Beltran-Bech S (2017) Multiple paternity in a wild population of Armadillidium vulgare: influence of infection with Wolbachia? J Evol Biol 30:235–243

    CAS  Article  PubMed  Google Scholar 

  69. Vandel A (1962) Faune de France 66, Isopodes Terrestres (Deuxième Partie). Paul Lechevalier edn, Paris

    Google Scholar 

  70. Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer edn, New York http://www.stats.ox.ac.uk/pub/MASS4/

    Book  Google Scholar 

  71. Verne S, Puillandre N, Brunet G, Gouin N, Samollow PB, Anderson JD, Grandjean F (2006) Characterization of polymorphic microsatellite loci in the terrestrial isopod Armadillidium vulgare. Mol Ecol Notes 6:328–330

    CAS  Article  Google Scholar 

  72. Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wedell N (1997) Ejaculate size in bushcrickets: the importance of being large. J Evol Biol 10:315–325

    Article  Google Scholar 

  74. Weeks SC, Reed SK, Ott DW, Scanabissi F (2009) Inbreeding effects on sperm production in clam shrimp (Eulimnadia texana). Evol Ecol Res 11:125–134

    Google Scholar 

  75. Yasui Y (1998) The ‘genetic benefits’ of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    CAS  Article  PubMed  Google Scholar 

  76. Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proc R Soc B-Biol Sci 263:1711–1717

    Article  Google Scholar 

  77. Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1:720–731

    CAS  Article  PubMed  Google Scholar 

  78. Ziegler A, Suzuki S (2011) Sperm storage, sperm translocation and genitalia formation in females of the terrestrial isopod Armadillidium vulgare (Crustacea, Peracarida, Isopoda). Arthropod Struct Dev 40:64–76

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Guyonnet for the technical assistance in genotyping the animals. Doctoral researches of S. Durand were funded by the Région Nouvelle-Aquitaine, previously Région Poitou-Charentes. The funding is partly granted by the following 2015–2020 programs: the State-Region Planning Contracts (CPER) and the European Regional Development Fund (FEDER). A. Cohas is supported by the Agence Nationale de la Recherche (Project ANR-13-JSV7-0005). This work was supported by the French Centre National de la Recherche Scientifique and the French Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylvine Durand.

Additional information

Communicated by N. Wedell

Electronic supplementary material

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 21 kb)

ESM 4

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durand, S., Cohas, A., Braquart-Varnier, C. et al. Paternity success depends on male genetic characteristics in the terrestrial isopod Armadillidium vulgare . Behav Ecol Sociobiol 71, 90 (2017). https://doi.org/10.1007/s00265-017-2317-1

Download citation

Keywords

  • Genetic diversity
  • Heterozygosity
  • Mate preference
  • Inbreeding avoidance
  • Multiple mating
  • Compatibility