Advertisement

Behavioral Ecology and Sociobiology

, Volume 70, Issue 9, pp 1547–1556 | Cite as

Male genital claspers influence female mate acceptance in the stick insect Clitarchus hookeri

  • Shelley S. Myers
  • Thomas R. Buckley
  • Gregory I. Holwell
Original Article

Abstract

In animals with internal fertilization, male genitalia exhibit higher rates of divergence compared with other morphological trails. Recent evidence suggests sexual selection drives such as rapid and divergent trait evolution. External male genital structures which clasp or stimulate the female’s exterior are likely to be under similar selective constraints to internal genitalia; however, their function and influence on male mating success have rarely been studied in detail. Here, we modify the external genitalia of the phasmid Clitarchus hookeri (White) to assess the role of male claspers in achieving successful acceptance by females and subsequent copulation. By covering female opercular organs and abrading male claspers, we demonstrate the necessity of precise coupling between these external genitalic structures for copulation to take place. We found that modified females tolerate un-modified male clasping attempts up to four times longer than normally required for attachment. However, when un-modified females are contacted by modified male claspers, males are quickly rejected. Our results suggest that external genital structures play an important role in precopulatory mate acceptance. Here, we discuss the potential role of female choice and species, isolating hypotheses in explaining the high evolutionary rate of such structures.

Significance statement

Many male animals possess genital structures that allow them to grip on to females before, during, and after mating. We experimentally manipulated male claspers and the corresponding female morphology that is clasped by males for the stick insect Clitarchus hookeri, resulting in clear changes in mating behavior. We show that female mate acceptance is influenced by both the structure of male claspers and the ability of females to perceive clasping. This demonstrates that external genital structures can play an important role in precopulatory mate acceptance and that female choice is likely to influence their evolution.

Keywords

Female choice Genitalia Mating behavior Phasmatodea Manipulation Clasper 

Notes

Acknowledgments

This research was supported by core funding for the Crown Research Institutes from the Ministry of Business, Innovation and Employment’s Science and Innovation Group and the Allan Wilson Centre. We would like to thank Chrissie Painting and three anonymous reviewers for their comments which improved this manuscript.

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

265_2016_2163_MOESM1_ESM.docx (20 kb)
supplementary table 1 (DOCX 20 kb)
265_2016_2163_MOESM2_ESM.docx (20 kb)
supplementary table 2 (DOCX 19 kb)
265_2016_2163_MOESM3_ESM.docx (20 kb)
supplementary table 3 (DOCX 20 kb)

References

  1. Anderson MB (1982) Female choice selects for extreme tail length in a widowbird. Nature 229:818–820. doi: 10.1038/299818a0 CrossRefGoogle Scholar
  2. Ah-King M, Barron AB, Herberstein ME (2014) Genital evolution: why are females still understudied? PLoS Biol 12:e1001851. doi: 10.1371/journal.pbio.1001851 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnqvist G (1989) Sexual selection in a water strider: the function, mechanism of of a male grasping apparatus selection and heritability. Oikos 56:344–350. doi: 10.2307/3565619 CrossRefGoogle Scholar
  4. Arnqvist G (1997) The evolution of animal genitalia: distinguishing between hypotheses by single species studies. Biol J Linn Soc 60:365–379. doi: 10.1006/bijl.1996.0109 CrossRefGoogle Scholar
  5. Arnqvist G, Rowe L (1995) Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proc R Soc B 261:123–127. doi: 10.1098/rspb.1995.0126 CrossRefGoogle Scholar
  6. Arnqvist G, Rowe L (2002) Antagonistic coevolution between the sexes in a group of insects. Nature 415:787–789. doi: 10.1038/415787a CrossRefPubMedGoogle Scholar
  7. Arnqvist G, Rowe L (2013) Sexual conflict. Princeton University Press, PrincetonGoogle Scholar
  8. Aspiras AC, Smith FW, Angelini DR (2011) Sex-specific gene interactions in the patterning of insect genitalia. Dev Biol 360:369–380. doi: 10.1016/j.ydbio.2011.09.026 CrossRefPubMedGoogle Scholar
  9. Bertin A, Fairbairn DJ (2005) One tool, many uses: precopulatory sexual selection on genital morphology in Aquarius remigis. J Evol Biol 18:949–961. doi: 10.1111/j.1420-9101.2005.00913.x CrossRefPubMedGoogle Scholar
  10. Boake CR, DeAngelis MP, Andreadis DK (1997) Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed fly Drosophila heteroneura. PNAS 94:12442–12445CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bradler S (2001) The Australian stick insects, a monophyletic group within the Phasmatodea. Zoology 104:69. doi: 10.1016/j.crvi.2011.01.006 Google Scholar
  12. Bradler S (2009) Phylogeny of the stick and leaf insects (Insecta: Phasmatodea). Species Phylogenet Evol 2:3–139. doi: 10.1098/rspb.2008.1552 Google Scholar
  13. Briceño RD, Eberhard WG (2009a) Experimental demonstration of possible cryptic female choice on male tsetse fly genitalia. J Insect Physiol 55:989–996. doi: 10.1016/j.jinsphys.2009.07.001 CrossRefPubMedGoogle Scholar
  14. Briceño RD, Eberhard WG (2009b) Experimental modifications imply a stimulatory function for male tsetse fly genitalia, supporting cryptic female choice theory. J Evol Biol 22:1516–1525. doi: 10.1111/j.1420-9101.2009.01761.x CrossRefPubMedGoogle Scholar
  15. Buckley TR, Marske K, Attanayake D (2010a) Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia. J Biogeogr 37:682–695. doi: 10.1111/j.1365-2699.2009.02239.x CrossRefGoogle Scholar
  16. Buckley TR, Attanayake D, Nylander JA, Bradler S (2010b) The phylogenetic placement and biogeographical origins of the New Zealand stick insects (Phasmatodea). Syst Entomol 35:207–225. doi: 10.1111/j.1365-3113.2009.00505.x CrossRefGoogle Scholar
  17. Buckley TR, Myers SS, Bradler S (2014) Revision of the stick insect genus Clitarchus Stål (Phasmatodea: Phasmatidae): new synonymies and two new species from northern New Zealand. Zootaxa 3900(4):451–482. doi:  10.11646/zootaxa.3900.4.1.
  18. Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595. doi: 10.1017/S1464793103006158 CrossRefPubMedGoogle Scholar
  19. Dufour L (1844) Anatomie générale des Dipteres. Ann Sci Nat 1:224–264. doi: 10.1111/j.1420-9101.2007.01323.x Google Scholar
  20. Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge MACrossRefGoogle Scholar
  21. Eberhard WG (2001) The functional morphology of species-specific clasping structures on the front legs of male Archisepsis and Palaeosepsis flies (Diptera, Sepsidae). Zool J Linnean Soc 133:335–368. doi: 10.1111/j.1096-3642.2001.tb00630.x CrossRefGoogle Scholar
  22. Eberhard WG (2010) Evolution of genitalia: theories, evidence, and new directions. Genetica 138:5–18. doi: 10.1007/s10709-009-9358-y CrossRefPubMedGoogle Scholar
  23. Eberhard WG (2011) Experiments with genitalia: a commentary. Trends Ecol Evol 26:17–21. doi: 10.1016/j.tree.2010.10.009 CrossRefPubMedGoogle Scholar
  24. Fincke OM, Fargevieille A, Schultz TD (2007) Lack of innate preference for morph and species identity in mate-searching Enallagma damselflies. Behav Ecol Sociobiol 61:1121–1131. doi: 10.1007/s00265-006-0345-3 CrossRefGoogle Scholar
  25. Friesen CR, Uhrig EJ, Squire MK, Mason RT, Brennan PLR (2014) Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proc R Soc B 281:20132694. doi: 10.1098/rspb.2013.2694 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grieshop K, Polak M (2012) The precopulatory function of male genital spines in Drosophila ananassae [Doleschall] (Diptera:Drosophilidae) revealed by laser surgery. Evolution 66:2637–2645. doi: 10.1111/j.1558-5646.2012.01638.x CrossRefPubMedGoogle Scholar
  27. Hankison SJ, Morris MR (2002) Sexual selection and species recognition in the pygmy swordtail, Xiphophorus pygmaeus: conflicting preferences. Behav Ecol Sociobiol 51:140–145. doi: 10.1086/605079 CrossRefGoogle Scholar
  28. Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. TREE 19:87–93. doi: 10.1016/j.tree.2003.11.012 PubMedGoogle Scholar
  29. Hotzy C, Polak M, Rönn JL, Arnqvist G (2012) Phenotypic engineering unveils the function of genital morphology. Curr Biol 22:2258–2261. doi: 10.1016/j.cub.2012.10.009 CrossRefPubMedGoogle Scholar
  30. Kahn AT, Mautz B, Jennions MD (2010) Females prefer to associate with males with longer intromittent organs in mosquitofish. Biol Lett 6(1):55–58. doi: 10.1098/rsbl.2009.0637
  31. Kelly CD (2014a) Male-biased sex ratios and plasticity in post-insemination behaviour in the New Zealand stick insect Micrarchus hystriculeus. Behaviour 152:653–666. doi: 10.1163/1568539X-00003247 CrossRefGoogle Scholar
  32. Kelly CD (2014b) Sexual selection, phenotypic variation, and allometry in genitalic and non-genitalic traits in the sexually size-dimorphic stick insect Micrarchus hystriculeus. Biol J Linn Soc 113:471–484. doi: 10.1111/bij.12344 CrossRefGoogle Scholar
  33. Lande R (1981) Models of speciation by sexual selection on polygenic traits. PNAS 78:3721–3725. doi: 10.1016/j.anbehav.2007.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lande R, Kirkpatrick M (1988) Ecological speciation by sexual selection. J Theor Biol 133:85–98. doi: 10.1111/j.1461-0248.2011.01606.x CrossRefPubMedGoogle Scholar
  35. Langerhans RB, Layman CA, DeWitt TJ (2005) Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proc Natl Acad Sci U S A 102:7618–7623. doi: 10.1073/pnas.0500935102 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Leonard JL, Cordoba-Aguilar A (2010) The evolution of primary sexual characters in animals. Oxford University Press, OxfordGoogle Scholar
  37. McPeek MA, Shen L, Farid H (2009) The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution 63:73–83. doi: 10.1111/j.1558-5646.2008.00527.x CrossRefPubMedGoogle Scholar
  38. McPeek MA, Shen L, Torrey JZ, Farid H (2008) The tempo and mode of three-dimensional morphological evolution in male reproductive structures. Am Nat 171:158–178. doi: 10.1086/587076 CrossRefGoogle Scholar
  39. Mendelson TC, Shaw KL (2012) The (mis) concept of species recognition. Trends Ecol Evol 27:421–427. doi: 10.1016/j.tree.2012.04.001 CrossRefPubMedGoogle Scholar
  40. Moreno-Garcia M, Cordero C (2008) On the function of male genital claspers in Stenomacra marginella (Heteroptera: Largidae). J Ethol 26:255–260. doi: 10.1007/s10164-007-0058-8 CrossRefGoogle Scholar
  41. Morgan-Richards M, Trewick SA, Stringer I (2010) Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Mol Ecol 19:1227–1238. doi: 10.1111/j.1365-294X.2010.04542.x CrossRefPubMedGoogle Scholar
  42. Myers SS, Buckley TR, Holwell GI (2015) Mate detection and seasonal variation in stick insect mating behaviour (Phasmatodea: Clitarchus hookeri). Behaviour 152:1325–1348. doi: 10.1163/1568539X-00003281 CrossRefGoogle Scholar
  43. Paulson DR (1974) Reproductive isolation in damselflies. Syst Zool 23:40–49. doi: 10.1111/jeb.12274 CrossRefGoogle Scholar
  44. Peretti AV, Willemart RH (2006) Sexual coercion does not exclude luring behavior in the climbing camel-spider Oltacola chacoensis (Arachnida, Solifugae, Ammotrechidae). J Ethol 25:29–39. doi: 10.1007/s10164-006-0201-y CrossRefGoogle Scholar
  45. Phelps SM, Rand AS, Ryan MJ (2006) A cognitive framework for mate choice and species recognition. Am Nat 167:28–42. doi: 10.1086/498538 CrossRefPubMedGoogle Scholar
  46. Polak M, Rashed A (2010) Microscale laser surgery reveals adaptive function of male intromittent genitalia. Proc R Soc B 277:1371–1376. doi: 10.1098/rspb.2009.1720 CrossRefPubMedPubMedCentralGoogle Scholar
  47. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  48. Rönn J, Katvala M, Arnqvist G (2007) Coevolution between harmful male genitalia and female resistance in seed beetles. Proc Natl Acad Sci 104:10921–10925. doi: 10.1073/pnas.0701170104 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ryan MJ, Rand AS (1993) Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47:647–657. doi: 10.2307/2410076 CrossRefGoogle Scholar
  50. Schiffer M, Carew ME, Hoffmann AA (2004) Molecular, morphological and behavioural data reveal the presence of a cryptic species in the widely studied Drosophila serrata species complex. J Evol Biol 17:430–442. doi: 10.1046/j.1420-9101.2003.00657.x CrossRefPubMedGoogle Scholar
  51. Shapiro M, Porter AH (1989) The lock-and-key hypothesis: evolutionary and bisystematic interpretation of insect genitalia. Annu Rev Entomol 34:231–245. doi: 10.1146/annurev.en.34.010189.001311 CrossRefGoogle Scholar
  52. Simmons LW (2014) Sexual selection and genital evolution. Aust Entomol 53:1–17. doi: 10.1111/aen.12053 CrossRefGoogle Scholar
  53. Sokal RR, Rohlf FJ (1995) Biometry: the principles andpractice of statistics in biological research. WH. Freeman& Co., San FranciscoGoogle Scholar
  54. Sota T, Kubota K (2014) Genital lock-and-key as a selective agent against hybridization. Evolution 52:1507–1513. doi: 10.2307/2411321 CrossRefGoogle Scholar
  55. Stringer I (1970) The nymphal and imaginal stages of the bisexual stick insect Clitarchus hookeri (Phasmidae: Phasminae). N Z Entomol 4:85–95. doi: 10.1080/00779962.1970.9722927 CrossRefGoogle Scholar
  56. Tanabe T, Sota T (2008) Complex copulatory behavior and the proximate effect of genital and body size differences on mechanical reproductive isolation in the millipede genus Parafontaria. Am Nat 171:692–699. doi: 10.1086/587075 CrossRefPubMedGoogle Scholar
  57. Tuxen SL (1970) Taxonomist’s glossary of genitalia in insects, 2nd edn. Munksgaard, CopenhagenGoogle Scholar
  58. Usami T, Yokoyama J, Kubota K, Kawata M (2006) Genital lock-and-key system and premating isolation by mate preference in carabid beetles (Carabus subgenus, Ohomopterus). Biol J Linn Soc 87:145–154. doi: 10.1111/j.1095-8312.2006.00562.x CrossRefGoogle Scholar
  59. Zacharuk RY (1985) Antennae and sensilla. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, bio- chemistry, and pharmacology, vol VI: nervous system: sensory. Pergamon Press, New York, p 1–69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shelley S. Myers
    • 1
    • 2
  • Thomas R. Buckley
    • 1
    • 2
  • Gregory I. Holwell
    • 2
  1. 1.Landcare ResearchAucklandNew Zealand
  2. 2.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations