Behavioral Ecology and Sociobiology

, Volume 70, Issue 9, pp 1433–1440 | Cite as

Task specialization influences nestmate recognition ability in ants

  • Janni Larsen
  • Volker NehringEmail author
  • Patrizia d’Ettorre
  • Nick Bos
Original Article


Insect societies are a paramount example of efficiency based upon division of labour. Social insect workers specialize on different tasks, such as brood care and foraging. This polyethism is underlined by the development of brain and olfactory organs. Nestmate recognition in ants is based on perception of chemical cues through olfaction; therefore, we asked whether task polyethism affects the ability of ants to discriminate friends from foes. We used the carpenter ant Camponotus aethiops to investigate the ability of three behavioural groups of worker (foragers, nurses and inactives) in recognizing intruders. Foragers, which are older workers mainly performing tasks outside the nest, showed higher levels of aggression towards intruders than nurses did. Foragers appeared to be more efficient at recognizing non-nestmate cues than did intra-nidal workers (nurses and inactives), and they possibly have higher motivation to attack. This suggests that ant workers change their olfactory sensitivity to non-nestmate stimuli during their life. This plasticity could be adaptive, as younger workers, who typically stay inside the nest, usually do not encounter intruders, while older workers have more experience outside the nest and differently developed neural circuits. A sensitive nestmate recognition system would thus be an unnecessary cost early in life.

Significance statement

Ants are known to divide their workforce, often as a product of age. Younger workers take on safer tasks such as taking care of the brood, while older workers are often involved with more dangerous tasks such as foraging and defending the nest. Here, we show that workers change their olfactory sensitivity to intruders during their life. As a result, foragers are better than nurses at detecting intruders. Furthermore, foragers appeared to not only be more sensitive but also have higher motivation to attack. The higher sensitivity of foragers is most likely adaptive, as younger workers stay in the nest and typically do not encounter intruders, and a sensitive recognition system would be for them an unnecessary cost.


Polyethism Olfactory sensitivity Nestmate recognition 



Thanks to the members of the Centre for Social Evolution (CSE), University of Copenhagen for the pleasant working environment, in particular David Nash for providing useful comments. This study was supported by The Danish National Research Foundation (CSE), a Freia grant from the Faculty of Science, University of Copenhagen and a Marie Curie Reintegration Grant, both assigned to PdE, and the German Academic Exchange Service (DAAD), supporting VN. NB was supported by the Academy of Finland (decision numbers: 251337, 252411 and 289731) and the University of Helsinki.

Supplementary material

265_2016_2152_MOESM1_ESM.pdf (100 kb)
ESM 1 (PDF 99 kb)


  1. Anderson C (2001) The adaptive value of inactive foragers and the scout-recruit system in honey bee (Apis mellifera) colonies. Behav Ecol 12:111–119CrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker BM (2011) lme4: Linear mixed-effects models using S4 classesGoogle Scholar
  3. Behrends A, Scheiner R, Baker N, Amdam GV (2007) Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 42:1146–1153. doi: 10.1016/j.exger.2007.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc Lond B Biol Sci 364:3191–3207. doi: 10.1098/rstb.2009.0101 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Charbonneau D, Dornhaus A (2015) Workers “specialized” on inactivity: behavioural consistency of inactive workers and their role in task allocation. Behav Ecol Sociobiol 69:1459–1472CrossRefGoogle Scholar
  6. Charbonneau D, Hillis N, Dornhaus a. (2014) “Lazy” in nature: ant colony time budgets show high “inactivity” in the field as well as in the lab. Insectes Soc. doi:  10.1007/s00040-014-0370-6
  7. Chittka L, Muller H (2009) Learning, specialization, efficiency and task allocation in social insects. Commun Integr Biol 2:151–154Google Scholar
  8. Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008. doi: 10.1016/j.cub.2009.08.023 CrossRefPubMedGoogle Scholar
  9. Chittka L, Thomson JD (1997) Sensori-motor learning and its relevance for task specialization in bumble bees. Behav Ecol Sociobiol 41:385–398. doi: 10.1007/s002650050400 CrossRefGoogle Scholar
  10. Cini A, Gioli L, Cervo R (2009) A quantitative threshold for nest-mate recognition in a paper social wasp. Biol Lett 5:459–461. doi: 10.1098/rsbl.2009.0140 CrossRefPubMedPubMedCentralGoogle Scholar
  11. d’Ettorre P, Heinze J, Ratnieks FLW (2004) Worker policing by egg eating in the ponerine ant Pachycondyla inversa. Proc Biol Sci 271:1427–1434. doi: 10.1098/rspb.2004.2742 CrossRefPubMedPubMedCentralGoogle Scholar
  12. d’Ettorre P, Lenoir A (2010) Nestmate recognition. In: Lach L, Parr C, Abbot K (eds) Ant ecology. Oxford University Press, OxfordGoogle Scholar
  13. Eggleton P (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of Termites: A Modern Synthesis. Springer, Dordrecht, pp 1–2Google Scholar
  14. Errard C, Hefetz A (1997) Label familiarity and discriminatory ability of ants reared in mixed groups. Insectes Soc 44:189–198. doi: 10.1007/s000400050040 CrossRefGoogle Scholar
  15. Esponda F, Gordon DM (2015) Distributed nestmate recognition in ants. Proc R Soc B 282:20142838. doi: 10.1098/rspb.2014.2838 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fahrbach SE, Moore D, Capaldi EA et al (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem 5:115–123. doi: 10.1101/lm.5.1.115 PubMedPubMedCentralGoogle Scholar
  17. Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404Google Scholar
  18. Fresneau D, Dupuy P (1988) A study of polyethism in a ponerine ant: Neoponera apicalis (Hymenoptera, formicidae). Anim Behav 36:1389–1399CrossRefGoogle Scholar
  19. Giraldo YM, Traniello JFA (2014) Worker senescence and the sociobiology of aging in ants. Behav Ecol Sociobiol 68:1901–1919. doi: 10.1007/s00265-014-1826-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gordon DM (2010) Ant encounters: interaction networks and colony behaviour. Princeton University PressGoogle Scholar
  21. Gronenberg W, Heeren S, Hölldobler B (1996) Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol 199:2011–2019. doi: 10.2307/2937655 PubMedGoogle Scholar
  22. Guerrieri FJ, d’Ettorre P (2008) The mandible opening response: quantifying aggression elicited by chemical cues in ants. J Exp Biol 211:1109–1113. doi: 10.1242/jeb.008508 CrossRefPubMedGoogle Scholar
  23. Hannonen M, Sledge MF, Turillazzi S, Sundström L (2002) Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim Behav 64:477–485. doi: 10.1006/anbe.2002.4001 CrossRefGoogle Scholar
  24. Holman L, Dreier S, d’Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc Biol Sci 277:2007–2015. doi: 10.1098/rspb.2009.2311 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ichinose K, Lenoir A (2010) Hydrocarbons detection levels in ants. Insectes Soc 57:453–455. doi: 10.1007/s00040-010-0103-4 CrossRefGoogle Scholar
  26. Jandt JM, Dornhaus A (2009) Spatial organization and division of labour in the bumblebee Bombus impatiens. Anim Behav 77:641–651. doi: 10.1016/j.anbehav.2008.11.019 CrossRefGoogle Scholar
  27. Jandt JM, Huang E, Dornhaus A (2009) Weak specialization of workers inside a bumble bee (Bombus impatiens) nest. Behav Ecol Sociobiol 63:1829–1836. doi: 10.1007/s00265-009-0810-x CrossRefGoogle Scholar
  28. Jandt JM, Robins NS, Moore RE, Dornhaus A (2012) Individual bumblebees vary in response to disturbance: a test of the defensive reserve hypothesis. Insectes Soc 59:313–321. doi: 10.1007/s00040-012-0222-1 CrossRefGoogle Scholar
  29. Jaumann S, Scudelari R, Naug D (2013) Energetic cost of learning and memory can cause cognitive impairment in honeybees. Biol Lett 9:20130149. doi: 10.1098/rsbl.2013.0149 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jeanson R, Fewell JH, Gorelick R, Bertram SM (2007) Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 62:289–298. doi: 10.1007/s00265-007-0464-5 CrossRefGoogle Scholar
  31. Larsen J, Fouks B, Bos N et al (2014) Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers. J Insect Physiol 70:59–66. doi: 10.1016/j.jinsphys.2014.09.002 CrossRefPubMedGoogle Scholar
  32. Lenoir A, Depickère S, Devers S et al (2009) Hydrocarbons in the ant Lasius niger: from the cuticle to the nest and home range marking. J Chem Ecol 35:913–921. doi: 10.1007/s10886-009-9669-6 CrossRefPubMedGoogle Scholar
  33. Libbrecht R, Oxley PR, Kronauer DJ, Keller L (2013) Ant genomics sheds light on the molecular regulation of social organization. Genome Biol 14:212. doi: 10.1186/gb-2013-14-7-212 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093. doi: 10.1126/science.1234316 CrossRefPubMedGoogle Scholar
  35. Moroń D, Witek M, Woyciechowski M (2008) Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim Behav 75:345–350. doi: 10.1016/j.anbehav.2007.06.005 CrossRefGoogle Scholar
  36. Muscedere ML, Traniello JF a (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLoS One 7:e31618. doi: 10.1371/journal.pone.0031618 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nehring V, Boomsma JJ, d’Ettorre P (2012) Wingless virgin queens assume helper roles in Acromyrmex leaf-cutting ants. Curr Biol 22:R671–R673. doi: 10.1016/j.cub.2012.06.038 CrossRefPubMedGoogle Scholar
  38. Nehring V, Wyatt TD, d’Ettorre P (2013) Noise in chemical communication. In: Brumm H (ed) Animal communication and noise. Springer, Heidelberg, Berlin, pp 373–405CrossRefGoogle Scholar
  39. Oster GF, Wilson E (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  40. Ottoni EB (2000) EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum Comput 32:446–449CrossRefPubMedGoogle Scholar
  41. Pearce AN, Huang ZY, Breed MD (2001) Juvenile hormone and aggression in honey bees. J Insect Physiol 47:1243–1247. doi: 10.1016/S0022-1910(01)00109-3 CrossRefPubMedGoogle Scholar
  42. R Development Core Team (2008) R: A language and environment for statistical computing., ISBN 3–9000051–07–0Google Scholar
  43. Ravary F, Lecoutey E, Kaminski G et al (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 17:1308–1312. doi: 10.1016/j.cub.2007.06.047 CrossRefPubMedGoogle Scholar
  44. Robinson G (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665. doi: 10.1146/annurev.ento.37.1.637 CrossRefPubMedGoogle Scholar
  45. Rosengren R (1977) Foraging strategy of wood ants (Formica rufa group). I. Age polyethism and topographic traditions. Acta Zool Fenn 149:1–29Google Scholar
  46. Santos JC, Yamamoto M, Oliveira F, Del-Claro K (2005) Behavioral repertory of the weaver ant Camponotus (Myrmobrachys) senex (Hymenoptera: Formicidae). Sociobiology 46:27–37Google Scholar
  47. Sherman PW, Reeve HK, Pfennig DW (1997) Recognition systems. In: KJ R, Davies NB (eds) Behavioural ecology, 4th edn. Blackwell Science, Oxford, pp 69–96Google Scholar
  48. Sobotnik J, Bourguignon T, Hanus R et al (2012) Explosive backpacks in old termite workers. Science 337:436–436. doi: 10.1126/science.1219129 CrossRefPubMedGoogle Scholar
  49. Starks PT (2004) Recognition systems: from components to conservation. Ann Zool Fennici 41:689–690Google Scholar
  50. Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423. doi: 10.1002/dneu.20785 CrossRefPubMedGoogle Scholar
  51. Sturgis SJ, Gordon DM (2012) Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News 16:101–110Google Scholar
  52. Sturgis SJ, Gordon DM (2013) Aggression is task dependent in the red harvester ant (Pogonomyrmex barbatus). Behavioral Ecology 24:532–539CrossRefGoogle Scholar
  53. Thomas ML, Elgar MA (2003) Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90:88–92. doi: 10.1007/s00114-002-0396-x PubMedGoogle Scholar
  54. Tofilski A (2002) Influence of age polyethism on longevity of workers in social insects. Behav Ecol Sociobiol 51:234–237. doi: 10.1007/s00265-001-0429-z
  55. Van Zweden J, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Bagneres AG, Blomquist GJ (eds) Insect hydrocarbons: biology. Biohemistry and Chemical Ecology. Cambridge University Press, Cambridge, pp 222–243CrossRefGoogle Scholar
  56. Van Zweden JS, Fürst MA, Heinze J, D’Ettorre P (2007) Specialization in policing behaviour among workers in the ant Pachycondyla inversa. Proc Biol Sci 274:1421–1428. doi: 10.1098/rspb.2007.0113 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Waddington SJ, Hughes WOH (2010) Waste management in the leaf-cutting ant Acromyrmex echinatior: the role of worker size, age and plasticity. Behav Ecol Sociobiol 64:1219–1228. doi: 10.1007/s00265-010-0936-x CrossRefGoogle Scholar
  58. Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav Ecol Sociobiol 7:157–165. doi: 10.1007/BF00299521 CrossRefGoogle Scholar
  59. Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364:238–240. doi: 10.1038/364238a0 CrossRefPubMedGoogle Scholar
  60. Zhou S, Stone EA, Mackay TFC, Anholt RRH (2009) Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet. doi:  10.1371/journal.pgen.1000681

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Janni Larsen
    • 1
  • Volker Nehring
    • 1
    • 2
    Email author
  • Patrizia d’Ettorre
    • 1
    • 3
  • Nick Bos
    • 1
    • 4
  1. 1.Department of BiologyCentre for Social Evolution, University of CopenhagenCopenhagenDenmark
  2. 2.Department of Evolutionary Biology and Animal Ecology, Biology IUniversity of FreiburgFreiburg im BreisgauGermany
  3. 3.Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  4. 4.Department BiosciencesCentre of Excellence in Biological Interactions, University of HelsinkiHelsinkiFinland

Personalised recommendations