Behavioral Ecology and Sociobiology

, Volume 70, Issue 4, pp 509–517 | Cite as

Honey bee foragers balance colony nutritional deficiencies

  • Harmen P. HendriksmaEmail author
  • Sharoni Shafir
Original Article


Honey bee colonies, foraging predominantly on a single pollen source, may encounter nutritional deficits. In the present study, we examined the nutritional resilience of honey bee colonies, testing whether foragers shift their foraging effort towards resources that complement a nutritional deficit. Eight honey bee colonies were kept in screened enclosures and fed for 1 week a pollen substitute diet deficient in a particular essential amino acid. Foragers were subsequently tested for a preference between the same diet previously fed, a different diet that was similarly deficient, or a diet that complemented the deficiency. Foragers preferred the complementary diet over the same or similar diets. Appetitive conditioning tests showed that bees were able to discriminate also between the same and similar diets. Overall, our results support the hypothesis that honey bees prefer dietary diversity, and that they do not just include novel sources but specifically target nutritionally complementary ones. Whereas we specifically focused on deficiencies in essential amino acids, we cannot rule out that bees were also complementing correlated imbalances in other nutrients, most notably essential fatty acids. The ability of honey bees to counter deficient nutrition contributes to the mechanisms which social insects use to sustain homeostasis at the colony level.


Apis mellifera Choice Essential amino acids PER Nutrient balancing Social insects 



This work was funded jointly by a grant from the BBSRC, NERC, the Wellcome Trust, Defra, and the Scottish Government under the Insect Pollinators Initiative (grant no: BB/I000968/1), and with partial support from the Orion Foundation. We thank Tania Masci, Karmi Oxman, and Haim Kalev for their valuable contribution to the work at the apiary and the laboratory.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

265_2016_2067_MOESM1_ESM.pdf (522 kb)
Online Resource Supplementary to the main paper, (1) methods and results of a diet screening experiment are provided, including (2) diet profiles of amino acid and fatty acid contents, (3) a data table with other nutritional and non-nutritional diet parameters, and (4) analyses of diet colors. (PDF 522 kb)


  1. Abisgold JD, Simpson SJ (1987) The physiology of compensation by locusts for changes in dietary-protein. J Exp Biol 129:329–346Google Scholar
  2. Afik O, Dag A, Shafir S (2008) Honey bee (Apis mellifera) round dance is influenced by trace element composition of floral nectar. Anim Behav 75:371–377CrossRefGoogle Scholar
  3. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565. doi: 10.1098/rsbl.2009.0986 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Archer CR, Köhler A, Pirk CWW, Oosthuizen V, Apostolides Z, Nicolson SW (2014) Antioxidant supplementation can reduce the survival costs of excess amino acid intake in honeybees. J Insect Physiol 71:78–86CrossRefPubMedGoogle Scholar
  5. Arganda S, Nicolis SC, Perochain A, Pechabadens C, Latil G, Dussutour A (2014) Collective choice in ants: the role of protein and carbohydrates ratios. J Insect Physiol 69:19–26. doi: 10.1016/j.jinsphys.2014.04.002 CrossRefPubMedGoogle Scholar
  6. Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015) Omega-3 deficiency impairs honey bee learning. PNAS 112:15761–15766Google Scholar
  7. Avni D, Dag A, Shafir S (2009) Pollen sources for honeybees in Israel: source, periods of shortage, and influence on population growth. Isr J Plant Sci 57:263–275. doi: 10.1560/IJPS573263, Special Issue: Developments in Plant-Pollinator InteractionsCrossRefGoogle Scholar
  8. Avni D, Hendriksma HP, Dag A, Uni Z, Shafir S (2014) Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J Insect Physiol 69:65–73. doi: 10.1016/j.jinsphys.2014.07.001 CrossRefPubMedGoogle Scholar
  9. Behmer S (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187CrossRefPubMedGoogle Scholar
  10. Behmer S (2014) Animal behaviour: feeding the superorganism. Curr Biol 19:R366CrossRefGoogle Scholar
  11. Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104CrossRefPubMedGoogle Scholar
  12. Bjordal M, Arquier N, Kniazeff J, Pin JP, Léopold P (2014) Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156:510–521CrossRefPubMedGoogle Scholar
  13. Camazine S, Crailsheim K, Hrassnigg N, Robinson GE, Leonhard B, Kropiunigg H (1998) Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 29:113–126CrossRefGoogle Scholar
  14. Chalisova NI, Kamyshev NG, Lopatina NG, Kontsevaya EA, Urtieva SA, Urtieva TA (2011) Effect of encoded amino acids on associative learning of honeybee Apis mellifera. J Evol Biochem Physiol 47:607–610CrossRefGoogle Scholar
  15. Cook SM, Awmack CS, Murray DA, Williams IH (2003) Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol Entomol 28:622–627CrossRefGoogle Scholar
  16. Cook SM, Sandoz JC, Martin AP, Murray DA, Poppy GM, Williams IH (2005) Could learning of pollen odours by honey bees (Apis mellifera) play a role in their foraging behaviour? Physiol Entomol 30:164–174CrossRefGoogle Scholar
  17. Crailsheim K (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. J Comp Physiol B 161:55–60CrossRefGoogle Scholar
  18. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  19. De Brito Sanchez MG (2011) Taste perception in honey bees. Chem Senses 36:675–692. doi: 10.1093/chemse/bjr040 CrossRefPubMedGoogle Scholar
  20. De Groot AP (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L). Dissertation, University of UtrechtGoogle Scholar
  21. Dussutour A, Simpson SJ (2009) Communal nutrition in ants. Curr Biol 19:740–744. doi: 10.1016/j.cub.2009.03.015 CrossRefPubMedGoogle Scholar
  22. Dussutour A, Simpson SJ (2012) Ant workers die young and colonies collapse when fed a high-protein diet. Proc R Soc B 279:2402–2408. doi: 10.1098/rspb.2012.0051 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanley M, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol 22:592–598CrossRefGoogle Scholar
  24. Hendriksma HP, Oxman KL, Shafir S (2014) Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions. J Insect Physiol 69:56–64CrossRefPubMedGoogle Scholar
  25. Inouye DW, Waller GD (1984) Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65:618–625Google Scholar
  26. Kim YS, Smith BH (2000) Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. J Insect Physiol 46:793–801CrossRefPubMedGoogle Scholar
  27. Lihoreau J, Buhl J, Charleston MA, Sword GA, Raubenheimer D, Simpson SJ (2014) Modelling nutrition across organizational levels: from individuals to superorganisms. J Insect Physiol 69:2–11. doi: 10.1016/j.jinsphys.2014.03.004 CrossRefPubMedGoogle Scholar
  28. Lihoreau M, Buhl J, Charleston MA, Sword GA, Raubenheimer D, Simpson SJ (2015) Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol Lett 18:273–286CrossRefPubMedPubMedCentralGoogle Scholar
  29. Linander N, Hempel de Ibarra N, Laska M (2012) Olfactory detectability of L-amino acids in the European honeybee (Apis mellifera). Chem Senses 37:631–638CrossRefPubMedGoogle Scholar
  30. McLellan AR (1978) Growth and decline of honeybee colonies and inter-relationships of adult bees, brood, honey and pollen. J Appl Ecol 15:155–161CrossRefGoogle Scholar
  31. Nicholls E, Hempel de Ibarra N (2014) Bees associate colour cues with differences in pollen rewards. J Exp Biol 217:2783–2788. doi: 10.1242/jeb.106120 CrossRefPubMedGoogle Scholar
  32. Paoli PP, Donley D, Stabler D, Saseendranath A, Nicolson SW, Simpson SJ, Wright GA (2014a) Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46:1449–1458CrossRefPubMedPubMedCentralGoogle Scholar
  33. Paoli PP, Wakeling LA, Wright GA, Ford D (2014b) The dietary proportion of essential amino acids and Sir2 influence lifespan in the honeybee. Age 36:9649. doi: 10.1007/s11357-014-9649-9 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pernal (2000) The influence of pollen quality and pollen-based cues on the nutrition and foraging behavior of honey bees, Apis mellifera L Dissertation, University of ManitobaGoogle Scholar
  35. Pernal SF, Currie RW (2001) The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 51:53–68CrossRefGoogle Scholar
  36. Pernal SF, Currie RW (2002) Discrimination and preferences for pollen-based cues by foraging honeybees, Apis mellifera L. Anim Behav 63:369–390CrossRefGoogle Scholar
  37. Pirk CWW, Boodhoo C, Human H, Nicolson SW (2010) The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41:62–72. doi: 10.1051/apido/2009055 CrossRefGoogle Scholar
  38. Potts SG, Bies-meijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  39. Povey S, Cotter SC, Simpson SJ, Wilson K (2013) Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J Anim Ecol 83:245–255CrossRefPubMedPubMedCentralGoogle Scholar
  40. Requier F, Odoux JF, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25:881–890CrossRefPubMedGoogle Scholar
  41. Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 20:1000–1005CrossRefPubMedGoogle Scholar
  42. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515CrossRefPubMedGoogle Scholar
  43. Schmidt JO (1984) Feeding preference of Apis mellifera L. (Hymenoptera: Apidae): individual versus mixed pollen species. J Kansas Entomol Soc 57:323–327Google Scholar
  44. Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard Press, CambridgeGoogle Scholar
  45. Simcock NK, Gray HE, Wright GA (2014) Single amino acids in sucrose rewards modulate feeding and associative learning in the honeybee. J Insect Physiol 69:41–48. doi: 10.1016/j.jinsphys.2014.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Simpson SJ, Raubenheimer D (2012) The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University PressGoogle Scholar
  47. Simpson SJ, Simpson CL (1992) Mechanisms controlling modulation by heamolymph amino acids of gustatory responsiveness in the locust. J Exp Biol 168:269–286Google Scholar
  48. Simpson CL, Simpson SJ, Abisgold JD (1990) The role of various amino acids in the protein compensatory response of Locusta migratoria. Symp Biol Hungar 39:39–46Google Scholar
  49. Somme L, Vanderplanck M, Michez D, Lombaerde I, Moerman R, Wathelet B, Wattiez R, Lognay G, Jacquemart AL (2015) Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46:92–106CrossRefGoogle Scholar
  50. Stabler D, Paoli PP, Nicolson SW, Wright GA (2015) Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on its dietary source of essential amino acids. J Exp Biol 218:793–802. doi: 10.1242/jeb.114249 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Toshima N, Tanimura T (2012) Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J Exp Biol 215:2827–2832CrossRefPubMedGoogle Scholar
  52. USDA (2014) United States Department of Agriculture’s National Nutrient Database for Standard Reference, Release 23 nutrient data laboratory home page.
  53. Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9, e86209. doi: 10.1371/journal.pone.0086209 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Vargas MA, Luo N, Yamaguchi A, Kapahi P (2010) A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol 20:1006–1011CrossRefPubMedPubMedCentralGoogle Scholar
  55. Von Frisch K (1934) Ueber den Geschmackssinn der Biene. Ein Beitrag zur vergleichenden Physiologie des Geschmacks. Z Vergl Physiol 21:1–156CrossRefGoogle Scholar
  56. Waddington KD, Nelson CM, Page RE Jr (1998) Effects of pollen quality and genotype on the dance of foraging honey bees. Anim Behav 56:35–39CrossRefPubMedGoogle Scholar
  57. Zuur AF, Ieno EN, Elphick CS (2009) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.B. Triwaks Bee Research Center, Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations