Behavioral Ecology and Sociobiology

, Volume 70, Issue 1, pp 111–122 | Cite as

Maternal kinship and fisheries interaction influence killer whale social structure

  • R. EstebanEmail author
  • P. Verborgh
  • P. Gauffier
  • J. Giménez
  • A. D. Foote
  • R. de Stephanis
Original Article


The primary prey of killer whales (Orcinus orca) in the Strait of Gibraltar is the bluefin tuna (Thunnus thynnus). All killer whales observed in this area hunt tuna by chasing individual fish until they become exhausted and can be overcome. However, a subset of pods also interact with a dropline tuna fishery which has developed since 1995. Here, we investigated the social structure within and among social units (pods). Our data suggested that social structure was shaped by maternal kinship, which appears to be a species-specific trait, but also by foraging behavior, which is less common at the intra-population level. At the start of the study, only one cohesive pod interacted with the fishery, which during the course of the study underwent fission into two socially differentiated pods. Social structure within these two fishery-interacting pods was more compact and homogenous with stronger associations between individuals than in the rest of the population. Three other pods were never seen interacting with the fishery, despite one of these pods being regularly sighted in the area of the fishery during the summer. Sociality can influence the spread of the novel foraging behaviors and may drive population fragmentation, which, in this example, is already a critically small community. Observations of social changes in relation to changes in foraging at the earliest stages of diversification in foraging behavior and social segregation may provide insights into the processes that ultimately result in the formation of socially isolated discrete ecotypes in killer whales.


Social organization Social dynamics Killer whale Orcinus orca Foraging 



We would like to specially thank CIRCE volunteers and research assistants that helped in the field work of CIRCE and EBD-CSIC. This work was funded by Loro Parque Foundation, CEPSA, Ministerio de Medio Ambiente, Fundación Biodiversidad, LIFE+ Indemares (LIFE07NAT/E/000732) and LIFE “Conservación de Cetáceos y tortugas de Murcia y Andalucía” (LIFE02NAT/E/8610), and “Plan Nacional I+D+I ECOCET” (CGL2011-25543) of the Spanish “Ministerio de Economía y Competitividad.” RdS and JG were supported by the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R+D+I (SEV-2012-0262),” and also RdS by the “Subprograma Juan de la Cierva.” Thanks are also due to the IFAW for providing the software Logger 2000. We would also like to thank the referees that have highly improved the quality of this manuscript.

Compliance with ethical standards

The data were collected on wild, free-ranging killer whales. The research team had a special permit from the Spanish Ministry of Environment to approach the whales and enter the restricted area established by the Spanish Royal Decree for protection of cetaceans (R.D. 1727/2007). During the encounters with whales, efforts were made to photograph all members of the group of animals seen during a sighting and avoid disturbance. If whales displayed boat avoidance behavior, encounters were ended.

Supplementary material

265_2015_2029_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)
265_2015_2029_MOESM2_ESM.docx (56 kb)
ESM 2 (DOCX 56 kb)


  1. Aloncle H (1964) Note sur le thon rouge de la Baie Ibéro-Marocaine. Bull Inst Pêches Marit Maroc 12:43–59Google Scholar
  2. Ansmann IC, Parra GJ, Chilvers BL, Lanyon JM (2012) Dolphins restructure social system after reduction of commercial fisheries. Anim Behav 84:575–581CrossRefGoogle Scholar
  3. Baird RW, Whitehead H (2000) Social organization of mammal-eating killer whales: group stability and dispersal patterns. Can J Zool 78:2096–2105CrossRefGoogle Scholar
  4. Barthélemy M, Barrat A, Pastor-Satorras R, Verpignani A (2005) Characterization and modeling of weighted networks. Physica 346:34–43CrossRefGoogle Scholar
  5. Beck S, Kuningas S, Esteban R, Foote AD (2012) The influence of ecology on sociality in the killer whale (Orcinus orca). Behav Ecol 23:246–253CrossRefGoogle Scholar
  6. Bejder L, Fletcher D, Bräger S (1998) A method for testing association patterns of social animals. Anim Behav 56:719–725PubMedCrossRefGoogle Scholar
  7. Bigg MA (1987) Killer whales: a study of their identification, genealogy, and natural history in British Columbia and Washington State. Phantom Press, NanaimoGoogle Scholar
  8. Bigg MA, Olesiuk PF, Ellis GM et al (1990) Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. RIWC 12:383–405Google Scholar
  9. Borenstein E, Feldman M, Aoki K (2008) Evolution of learning in fluctuating environments: when selection favors both social and exploratory individual learnings. Evolution 62:586–602PubMedCrossRefGoogle Scholar
  10. Boyd R, Richerson P (1985) Culture and the evolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  11. Breck SW, Williams CL, Beckmann JP et al (2008) Using genetic relatedness to investigate the development of conflict behavior in black bears. J Mammal 89:428–434CrossRefGoogle Scholar
  12. Brent LJN, Franks DW, Foster EA et al (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr Biol 25:746–750PubMedCrossRefGoogle Scholar
  13. Cairns SJ, Schwager SJ (1987) A comparison of association indices. Anim Behav 35:1454–1469Google Scholar
  14. Caro T (1994) Cheetahs of the Serengeti plains: group living in an asocial species. University Press, ChicagoGoogle Scholar
  15. Casinos A, Vericad JR (1976) The cetaceans of the Spanish coasts: a survey. Mammalia 40:267–290CrossRefGoogle Scholar
  16. Cetti F (1777) Storia naturale di Sardegna, III. Anfibi e Pesci. Tip. Giuseppe Piattoli, CagliariGoogle Scholar
  17. Charif R, Ramey R, Landbauer WI et al (2005) Spatial relationships and matrilineal kinship in African savanna elephant (Loxodonta africana) clans. Behav Ecol 57:327–338CrossRefGoogle Scholar
  18. Cheney D, Seyfarth R (1990) The representation of social relations by monkeys. Cognition 37:167–196PubMedCrossRefGoogle Scholar
  19. Chilvers BL, Corkeron PJ (2001) Trawling and bottlenose dolphins’ social structure. Proc R Soc Lond B 268:1901–1905CrossRefGoogle Scholar
  20. Chiyo PI, Moss CJ, Alberts SC (2012) The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS One 7:e31382PubMedPubMedCentralCrossRefGoogle Scholar
  21. Craighead J, Summer J, Mitchell J (1995) The grizzly bears of Yellowstone: their ecology in the Yellowstone ecosystem. Island Press, Washington, DCGoogle Scholar
  22. Croft DP, Madden JR, Franks DW, James R (2011) Hypothesis testing in animal social networks. Trends Ecol Evol 26:502–507PubMedCrossRefGoogle Scholar
  23. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9Google Scholar
  24. Daura-Jorge FG, Cantor M, Ingram SN et al (2012) The structure of a bottlenose dolphin society is coupled to a unique foraging cooperation with artisanal fishermen. Biol Lett 8:702–705PubMedPubMedCentralCrossRefGoogle Scholar
  25. de la Serna JM, de Urbina J (2010) Interacción de la orca (Orcinus orca), con las pesquerías de atún rojo (Thunnus Thynnus) en el área del Estrecho de Gibraltar. Collections Vol Sci Pap ICCAT 65:744–754Google Scholar
  26. de la Serna JM, Alot E, Majuelos E, Rioja P (2004) La migración trófica post reproductiva del atún rojo (Thunnus thynnus) a través del estrecho de Gibraltar. Collections Vol Sci Pap ICCAT 56:1196–1209Google Scholar
  27. de Stephanis R, Cornulier T, Verborgh P et al (2008) Summer spatial distribution of cetaceans in the Strait of Gibraltar in relation to the oceanographic context. Mar Ecol Prog Ser 353:275–288CrossRefGoogle Scholar
  28. Dekker D, Krackhardt D, Snijders TAB (2007) Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72:563–581PubMedPubMedCentralCrossRefGoogle Scholar
  29. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48Google Scholar
  30. Engh A, Esch K, Smale L, Holekamp K (2000) Mechanisms of maternal rank “inheritance” in the spotted hyaena. Anim Behav 60:323–332PubMedCrossRefGoogle Scholar
  31. Esteban R, Verborgh P, Gauffier P et al (2013) Identifying key habitat and seasonal patterns of a critically endangered population of killer whales. J Mar Biol Assoc UK 94:1317–1325CrossRefGoogle Scholar
  32. Farine DR (2013) Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol Evol 4:1187–1194CrossRefGoogle Scholar
  33. Felleman F, Heimlich-Boran S, Osborne RW (1998) The feeding ecology of killer whales (Orcinus orca) in the Pacific Northwest. In: Pyor K, Norris K (eds) Dolphin societies: discoveries and puzzles. University of California Press, Berkeley, pp 113–147Google Scholar
  34. Finn H, Donaldson R, Calver M (2008) Feeding flipper: a case study of a human dolphin interaction. Pac Conserv Biol 14:215–225Google Scholar
  35. Foote AD, Vilstrup JT, de Stephanis R et al (2011) Genetic differentiation among North Atlantic killer whale populations. Mol Ecol 20:629–641PubMedCrossRefGoogle Scholar
  36. Ford JKB, Ellis GM, Balcomb KC (1994) Killer whales: the natural history and genealogy of Orcinus orca in the waters of British Columbia and Washington State. UBC Press, VancouverGoogle Scholar
  37. Foster EA, Franks DW, Morrell LJ et al (2012) Social network correlates of food availability in an endangered population of killer whales, Orcinus orca. Anim Behav 83:731–736CrossRefGoogle Scholar
  38. Fragaszy D, Perry S, Laland K, Kendal J (2003) What the models say about social learning. In: Fragaszy D, Perry S (eds) The biology of traditions: models and evidence. Cambridge University Press, Cambridge, pp 33–55CrossRefGoogle Scholar
  39. Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  40. Galef B (1992) The question of animal culture. Hum Nat 3:151–178CrossRefGoogle Scholar
  41. Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407CrossRefGoogle Scholar
  42. Ginsberg JR, Young TP (1992) Measuring association between individuals or groups in behavioural studies. Anim Behav 44:377–379CrossRefGoogle Scholar
  43. Guinet C, Domenici P, de Stephanis R et al (2007) Killer whale predation on bluefin tuna: exploring the hypothesis of the endurance-exhaustion technique. Mar Ecol Prog Ser 347:111–119CrossRefGoogle Scholar
  44. Guinet C, Tixier P, Gasco N (2014) Long-term studies of Crozet Island killer whales are fundamental to understanding the economic and demographic consequences of their depredation behaviour on the Patagonian toothfish fishery. ICES J Mar Sci 72:1587–1597CrossRefGoogle Scholar
  45. Handcock MS, Hunter DR, Butts CT et al (2003) Statnet: software tools for the statistical modeling of network data, version 2. Seattle, WAGoogle Scholar
  46. Harms E (1997) Association patterns and pod cohesion in northern resident killer whales (Orcinus orca). MSc thesis, University of British Columbia, VancouverGoogle Scholar
  47. Heimlich-Boran S (1986) Cohesive relationships among Puget sound killer whales. In: Kirkevold BC, Lockard JS (eds) Behavioral biology of killer whales. Alan R. Liss, New York, pp 251–284Google Scholar
  48. Hockings KJ, Anderson JR, Matsuzawa T (2012) Socioecological adaptations by chimpanzees, Pan troglodytes verus, inhabiting an anthropogenically impacted habitat. Anim Behav 83:801–810CrossRefGoogle Scholar
  49. Horozco A (1598) Historia de la ciudad de Cádiz. El Excmo. Ayuntamiento de esta M.N.. M. L. y M. H. CiudadGoogle Scholar
  50. ICCAT (2011) Report of the 2010 ICCAT bluefin tuna stock assessment session. Madrid, SpainGoogle Scholar
  51. ICCAT (2014a) Report of the 2014 ICCAT bluefin tuna stock assessment session. Madrid, SpainGoogle Scholar
  52. ICCAT (2014b) Report of the 2014 Atlantic bluefin tuna stock assessment session. Madrid, SpainGoogle Scholar
  53. Ivkovich T, Filatova OA, Burdin AM et al (2010) The social organization of resident-type killer whales (Orcinus orca) in Avacha Gulf, Northwest Pacific, as revealed through association patterns and acoustic similarity. Mamm Biol 75:198–210Google Scholar
  54. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15CrossRefGoogle Scholar
  55. Kappeler PM, Barrett L, Blumstein DT, Clutton-Brock TH (2013) Constraints and flexibility in mammalian social behaviour: introduction and synthesis. Philos Trans Roy Soc B 368:20120337CrossRefGoogle Scholar
  56. Klopfer P (1961) Observational learning in birds: the establishment of behavioural modes. Behaviour 14:71–80CrossRefGoogle Scholar
  57. Laland KN, Galef B (2009) The question of animal culture. Harvard Universitiy Press, LondonGoogle Scholar
  58. Laland KN, Janik VM (2006) The animal cultures debate. Trends Ecol Evol 21:542–547PubMedCrossRefGoogle Scholar
  59. Laland KN, O’Brien MJ (2012) Cultural niche construction: an introduction. Biol Theory 6:191–202CrossRefGoogle Scholar
  60. Lozano F (1958) Los escómbridos de las aguas españolas y marroquíes y su pesca. Trab Inst Esp Ocean 25:254Google Scholar
  61. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271:S477–S481CrossRefGoogle Scholar
  62. Lusseau D, Williams R, Wilson B et al (2004) Parallel influence of climate on the behaviour of Pacific killer whales and Atlantic bottlenose dolphins. Ecol Lett 7:1068–1076CrossRefGoogle Scholar
  63. Matkin CO, Ellis G, Olesiuk PF, Saulitis E (1999) Association patterns and inferred genealogies of resident killer whales, Orcinus orca, in Prince William Sound, Alaska. Fish Bull 97:900–919Google Scholar
  64. Mazur R, Seher V (2008) Socially learned foraging behaviour in wild black bears, Ursus americanus. Anim Behav 75:1503–1508CrossRefGoogle Scholar
  65. McCarthy T, Seavoy R (1994) Reducing nonsport losses attributable to food conditioning: human and bear behavior modification in an urban environment. Int C Bear 9:75–84Google Scholar
  66. McComb K, Moss C, Durant S et al (2001) Matriarchs as repositories of social knowledge in African elephants. Science 292:491–494PubMedCrossRefGoogle Scholar
  67. McGrew W (2004) The cultured chimpanzee: reflections on cultural primatology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. Nel J (1999) Social learning in canids: an ecological perspective. In: Box HO, Gibson KR (eds) Mammalian social learning: comparative and ecological perspectives. Cambridge University Press, Cambridge, pp 259–278Google Scholar
  69. Newman M (2004) Analysis of weighted networks. Phys Rev E 70:056131CrossRefGoogle Scholar
  70. Olesiuk PF, Bigg MA, Ellis G (1990) Life history and population dynamics of northern resident killer whales (Orcinus orca) in British Columbia. RIWC Spec Issue 12:209–244Google Scholar
  71. Ottensmeyer CA, Whitehead H (2003) Behavioural evidence for social units in long-finned pilot whales. Can J Zool 81:1327–1338Google Scholar
  72. Parsons KM, Balcomb KC, Ford JKB, Durban JW (2009) The social dynamics of southern resident killer whales and conservation implications for this endangered population. Anim Behav 77:963–971CrossRefGoogle Scholar
  73. Poncelet E, Barbraud C, Guinet C (2010) Population dynamics of killer whales (Orcinus orca) in Crozet Archipelago, southern Indian Ocean: a mark-recapture study from 1977 to 2002. J Cetac Res Manage 11:41–48Google Scholar
  74. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria,
  75. Ravier C, Fromentin JMM (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci 58:1299–1317CrossRefGoogle Scholar
  76. Riesch R, Barrett-Lennard LG, Ellis GM et al (2012) Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales? Biol J Linn Soc 106:1–17CrossRefGoogle Scholar
  77. Rodríguez-Roda J (1964) Talla, peso y edad de los atunes, Thunnus thynnus (L.), capturados por la almadraba de Barbate (costa sudatlántica de España) en 1963 y comparación con el período 1956 a 1962. Investig Pesq 26:3–48Google Scholar
  78. Samuels A, Bejder L (2004) Chronic interaction between humans and free-ranging bottlenose dolphins near Panama City Beach, Florida. J Cetac Res Manage 6:69–77Google Scholar
  79. Sargeant BL, Mann J (2009) Developmental evidence for foraging traditions in wild bottlenose dolphins. Anim Behav 78:715–721CrossRefGoogle Scholar
  80. Schaller G (1972) The Serengeti lion. University of Chicago Press, ChicagoGoogle Scholar
  81. Scheel D, Saulitis EVA, Matkin CO (2001) Distribution of killer whale pods in Prince William Sound 1984–1996. Mar Mammal Sci 17:555–569CrossRefGoogle Scholar
  82. Sella M (1929) Migrazioni e habitat del tonno (Thunnus thynnus L) studiati col metodo degli ami, con osservazioni su l’accrescimento, sul regime delle tonnare ecc. Mem R Com Talassogr Ital 156:511–542Google Scholar
  83. Seyfarth R (1980) The distribution of grooming and related behaviours among adult female vervet monkeys. Anim Behav 28:798–813CrossRefGoogle Scholar
  84. Similä T (1997) Sonar observations of killer whales (Orcinus orca) feeding on herring schools. Aquat Mamm 23:119–126Google Scholar
  85. Srour A (1994) Développement de la nouvelle pêcherie artisanale au thon rouge dans la région de Ksar sghir. Note Inf ISPM 26:10–11Google Scholar
  86. Sundaresan SR, Fischhoff IR, Dushoff J (2009) Avoiding spurious findings of nonrandom social structure in association data. Anim Behav 77:1381–1385CrossRefGoogle Scholar
  87. Taniello JFA, Bakker TCM (2015) Minimizing observer bias in behavioral research: blinded methods reporting requirements for Behavioral Ecology and Sociobiology. Behav Ecol Sociobiol 69:1573–1574CrossRefGoogle Scholar
  88. Taylor NGN, McAllister MMK, Lawson GGL et al (2011) Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass. PLoS One 6:e27693PubMedPubMedCentralCrossRefGoogle Scholar
  89. Templeton J, Kamil A, Balda R (1999) Sociality and social learning in two species of corvids. Comput Phsycol 113:450–455Google Scholar
  90. Thornton A, Clutton-Brock T (2011) Social learning and the development of individual and group behaviour in mammal societies. Philos T Roy Soc B 366:978–987CrossRefGoogle Scholar
  91. Tixier P, Authier M, Gasco N, Guinet C (2014) Influence of artificial food provisioning from fisheries on killer whale reproductive output. Anim Conserv 18:207–218CrossRefGoogle Scholar
  92. Tosh CA, de Bruyn PJN, Bester MN (2008) Preliminary analysis of the social structure of killer whales, Orcinus orca, at subantarctic Marion Island. Mar Mammal Sci 24:929–940Google Scholar
  93. Tregenza T (1995) Building on the ideal free distribution. Adv Ecol Res 26:253–307CrossRefGoogle Scholar
  94. van der Post D, Hogeweg P (2009) Cultural inheritance and diversification of diet in variable environments. Anim Behav 78:155–166CrossRefGoogle Scholar
  95. Whitehead H (1995) Investigating structure and temporal scale in social organizations using identified individuals. Behav Ecol 6:199–208CrossRefGoogle Scholar
  96. Whitehead H (2008) Analysing animal societies. Quantitative methods for vertebrate social analysis. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  97. Whitehead H (2009) SOCPROG programs: analysing animal social structures. Behav Ecol Sociobiol 63:765–778CrossRefGoogle Scholar
  98. Whitehead H, Rendell L (2004) Movements, habitat use and feeding success of cultural clans of South Pacific sperm whales. J Anim Ecol 73:190–196CrossRefGoogle Scholar
  99. Whitehead H, Weilgart L (2000) The sperm whale: social females and roving males. In: Mann J, Connor RC, Tyack P, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, pp 154–172Google Scholar
  100. Whiten A, van Schaik CP (2007) The evolution of animal “cultures” and social intelligence. Philos T Roy Soc B 362:603–620CrossRefGoogle Scholar
  101. Whiten A, Hiden R, Laland K, Stringer C (2011) Culture evolves. Philos T Roy Soc B 3666:938–948CrossRefGoogle Scholar
  102. Whittaker D, Knight R (1998) Understanding wildlife responses to humans. Wildl Soc B 26:312–317Google Scholar
  103. Williams R, Lusseau D (2006) A killer whale social network is vulnerable to targeted removals. Biol Lett 2:497–500PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wilson S, Block B (2009) Habitat use in Atlantic bluefin tuna Thunnus thynnus inferred from diving behavior. Endanger Species Res 10:355–367CrossRefGoogle Scholar
  105. Zhang L, Wang N (2003) An initial study on habitat conservation of Asian elephant (Elephas maximus), with a focus on human elephant conflict in Simao, China. Biol Conserv 112:453–459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CIRCE (Conservation, Information and Research on Cetaceans)CádizSpain
  2. 2.GEMA Grupo de Ecología Marina AplicadaEstación Biológica de Doñana CSICSevillaSpain
  3. 3.Centre for GeoGeneticsThe Natural History Museum of DenmarkCopenhagen KDenmark
  4. 4.Department of Evolutionary Biology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations