Advertisement

Behavioral Ecology and Sociobiology

, Volume 69, Issue 11, pp 1855–1865 | Cite as

Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs

  • Kim Valenta
  • Kevin A. Brown
  • Radoniaina R. Rafaliarison
  • Sarah A. Styler
  • Derek Jackson
  • Shawn M. Lehman
  • Colin A. Chapman
  • Amanda D. Melin
Original Article

Abstract

Animal reliance on fruit signals, such as hardness, colour, and odour, during foraging is poorly understood. Here, we present data on fruit foraging behaviour and efficiency (rate of fruit ingestion) of three groups of wild, frugivorous brown lemurs (Eulemur fulvus, N = 29 individuals) in Ankarafantsika National Park, Madagascar. We quantify fruit hardness using a modified force gauge, fruit colour using spectroscopy, and fruit odour using volatile organic compound (VOC) sampling with gas chromatography-mass spectrometry. We relate lemur foraging behaviour to fruit traits by calculating touching, visual inspection, and sniffing indices and relate lemur foraging efficiency to fruit traits by calculating acceptance indices. The use of different sensory modalities by lemurs is marginally predicted in one case by fruit traits—fruits with higher overall smell signals are sniffed less than fruits with lower overall smell signals. When controlling for all fruit traits, fruit size is the only significant predictor of fruit foraging efficiency—lemurs forage more rapidly on smaller fruits relative to larger fruits.

Keywords

Brown lemurs Colour vision Olfaction Volatile Organic Compounds Frugivory Fruit choice Madagascar 

Notes

Acknowledgments

We thank MICET and Madagascar National Parks, for permission to conduct this research in Madagascar. We thank Dr. Scott Mabury for the loan of instrumentation. We are grateful to Paul Tsiveraza, Francette, Mamy Razafitsalama and Jean de-la-Dieu for contributions in the field. For helpful commentary, we thank Drs. Mary Silcox, Joyce Parga, Esteban J. Parra, Esteban Fernandez-Juricic, Theo C.M. Bakker and two anonymous reviewers. For funding, we thank Sigma Xi, GM Women in Science (KV), the University of Toronto and Natural Sciences and Engineering Research Council of Canada (NSERC) (KV) and NSERC, and the Canada Research Chair Program aided in the writing stage.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study complies with all national and regional laws dealing with ethics and animal welfare in both Madagascar and Canada (University of Toronto (Animal Care Protocol #20009112).

References

  1. Allen WL, Higham JP (2013) Analyzing visual signals as visual scenes. Am J Primatol 75:664–682CrossRefPubMedGoogle Scholar
  2. Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 48:227–265CrossRefGoogle Scholar
  3. Balcomb SR, Chapman CA (2003) Bridging the gap: influence of seed deposition on seedling recruitment in a primate-tree interaction. Ecol Monogr 73:625–642CrossRefGoogle Scholar
  4. Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos T Roy Soc B 348:381–392CrossRefGoogle Scholar
  5. Carvalho LS, Davies WL, Robinson PR, Hunt DM (2012) Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc R Soc Lond B 279:387–393CrossRefGoogle Scholar
  6. Chapman LJ, Chapman CA, Wrangham RW (1992) Balanites wilsoniana: elephant dependent dispersal. J Trop Ecol 8:275–283CrossRefGoogle Scholar
  7. Debussche M, Isenmann P (1989) Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56:327–338CrossRefGoogle Scholar
  8. Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44:295–303CrossRefPubMedGoogle Scholar
  9. Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366CrossRefPubMedGoogle Scholar
  10. Fischer K, Chapman C (1993) Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos 66:472–482CrossRefGoogle Scholar
  11. Ganzhorn JU (2002) Distribution of a folivorous lemur in relation to seasonally varying food resources: integrating quantitative and qualitative aspects of food characteristics. Oecologia 131:427–435CrossRefGoogle Scholar
  12. Gilad Y, Wiebe V, Przeworski M, Lancet D, Paabo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 5:e148CrossRefGoogle Scholar
  13. Herrera C (1987) Vertebrate-dispersed plants of the Iberian Peninsula: a study of fruit characteristics. Ecol Monogr 57:305–331CrossRefGoogle Scholar
  14. Herrera C (1992) Interspecific variation in fruit shape: allometry, phylogeny, and adaptation to dispersal agents. Ecology 73:1832–1841CrossRefGoogle Scholar
  15. Hiramatsu C, Melin AD, Aureli F, Schaffner CM, Vorobyev M, Matsumoto Y, Kawamura S (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One 3:e3356PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hiramatsu C, Melin AD, Aureli F, Schaffner CM, Vorobyev M, Kawamura S (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426CrossRefGoogle Scholar
  17. Hirsch BT (2010) Tradeoff between travel speed and olfactory food detection in ring-tailed coatis (Nasua nasua). Ethology 116:671–679Google Scholar
  18. Hodgkison R, Ayasse M, Kalko E, Häberlein C, Schulz S, Mustapha W, Zubaid A, Kunz T (2007) Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). J Chem Ecol 33:2097–2110CrossRefPubMedGoogle Scholar
  19. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228CrossRefGoogle Scholar
  20. Jacobs GH, Deegan JF (1993) Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). Am J Primatol 30:243–256CrossRefGoogle Scholar
  21. Janson CH (1983) Adaptation of fruit morphology to dispersal agents in a neotropical rainforest. Science 219:187–189CrossRefPubMedGoogle Scholar
  22. Kinzey WG, Norconk MA (1990) Hardness as a basis of fruit choice in two sympatric primates. Am J Phys Anthropol 81:5–15CrossRefPubMedGoogle Scholar
  23. Kirk EC, Kay RF (2004) The evolution of high visual acuity in the Anthropoidea. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions. Kluwer Academic, New York, pp 539–602CrossRefGoogle Scholar
  24. Korine C, Kalko EK, Herre EA (2000) Fruit characteristics and factors affecting fruit removal in a Panamanian community of strangler figs. Oecologia 123:560–568CrossRefGoogle Scholar
  25. Laska M, Bautista RMR, Salazar LTH (2006) Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). Am J Phys Anthropol 129:112–120CrossRefPubMedGoogle Scholar
  26. Linn CE Jr, Dambroski HR, Feder JL, Berlocher SH, Nojima S, Roelofs WL (2004) Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors. Proc Natl Acad Sci U S A 101:17753–17758PubMedCentralCrossRefPubMedGoogle Scholar
  27. Lomáscolo S, Schaefer H (2010) Signal convergence in fruits: a result of selection by frugivores? J Evol Biol 23:614–624CrossRefPubMedGoogle Scholar
  28. Lomáscolo S, Speranza P, Kimball R (2008) Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156:783–796CrossRefPubMedGoogle Scholar
  29. Lomáscolo S, Levey D, Kimball R, Bolker B, Alborn H (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proc Natl Acad Sci U S A 107:14668–14672PubMedCentralCrossRefPubMedGoogle Scholar
  30. Martin PR, Grunert U (1999) Analysis of short wavelength sensitive ("blue") cone mosaic in the primate retina: a comparison of New World and Old World monkeys. J Comp Neurol 406:1–14CrossRefPubMedGoogle Scholar
  31. Masette M, Isabirye-Basuta G, Baranga D, Chapman CA, Rothman JM (2015) The challenge of interpreting primate diets: mangabey foraging on Blighia unijugata fruit in relation to changing nutrient content. Afr J Ecol 53:259–267CrossRefGoogle Scholar
  32. Matsumoto Y, Hiramatsu C, Matsushita Y, Ozawa N, Ashino R, Nakata M, Kasagi S, Di Fiore A, Schaffner CM, Aureli F, Melin AD (2014) Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys. Mol Ecol 7:1799–1812Google Scholar
  33. Mazer SJ, Wheelwright NT (1993) Fruit size and shape: allometry at different taxonomic levels in bird-dispersed plants. Evol Ecol 7:556–575CrossRefGoogle Scholar
  34. Melin AD, Fedigan LM, Hiramatsu C, Hiwatashi T, Parr N, Kawamura S (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775CrossRefGoogle Scholar
  35. Melin AD, Moritz GL, Fosbury RA, Kawamura S, Dominy NJ (2012) Why aye-ayes see blue. Am J Primatol 74:185–192CrossRefPubMedGoogle Scholar
  36. Mittermeier CG, Louis EE, Richardson M et al (2010) Lemurs of Madagascar, 3rd edn. Conservation International, BogotaGoogle Scholar
  37. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, vol 4. Irwin, ChicagoGoogle Scholar
  38. Osorio D, Smith AC, Vorobyev M, Buchanan-Smith HM (2004) Detection of fruit and the selection of primate visual pigments for color vision. Am Nat 164:696–708CrossRefGoogle Scholar
  39. Peichl L, Rakotondraparany F, Kappeler PM (2001) Photoreceptor types and distributions in nocturnal and diurnal Malagasy primates. Invest Ophth Vis Sci 42:270Google Scholar
  40. Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: towards an integrated framework. Func Ecol 23:4–16CrossRefGoogle Scholar
  41. Rothman JM, Chapman CA, Van Soest PJ (2012) Methods in primate nutritional ecology: a user’s guide. Int J Primatol 33:542–566CrossRefGoogle Scholar
  42. Rushmore J, Leonhardt SD, Drea CM (2012) Sight or scent: Lemur sensory reliance in detecting food quality varies with feeding ecology. PLoS One 7:1–11CrossRefGoogle Scholar
  43. Sanchez F, Korine C, Steeghs M, Laarhoven L, Cristescu SM, Harren FJM, Dudley R, Pinshow B (2006) Ethanol and methanol as possible odor cues for egyptian fruit bats (Rousettus aegypticus). J Chem Ecol 32:1289–1300CrossRefPubMedGoogle Scholar
  44. Sato H (2012) Frugivory and seed dispersal by brown lemurs in a Malagasy tropical dry forest. Biotropica 44:479–488CrossRefGoogle Scholar
  45. Schaefer HM, Levey DJ, Schaefer V, Avery ML (2006) The role of chromatic and achromatic signals for fruit detection by birds. Behav Ecol 17:784–789CrossRefGoogle Scholar
  46. Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169:S159–S169CrossRefPubMedGoogle Scholar
  47. Schatz GE (2001) Generic tree flora of Madagascar. Royal Botanic Gardens, Kew and Missouri Gardens, St. LouisGoogle Scholar
  48. Shepherd GM (2004) The human sense of smell: are we better than we think? PLoS Biol 2:e146PubMedCentralCrossRefPubMedGoogle Scholar
  49. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  50. Sumner P, Mollon JD (2000) Chromaticity as a signal of ripeness in fruits taken by primates. The J Exp Biol 203:1987–2000PubMedGoogle Scholar
  51. Valenta K (2014) Endemic fruit signals in Madagascar drive variation in Eulemur fulvus foraging behaviour and efficiency. PhD thesis, Department of Anthropology. TorontoGoogle Scholar
  52. Valenta K, Melin AD (2012) Protein limitation explains variation in primate colour vision phenotypes: a unified model for the evolution of primate trichromatic vision. In: Garcia MD (ed) Zoology. InTech, Rijeka, pp 29–46Google Scholar
  53. Valenta K, Burke RJ, Styler SA, Jackson DA, Melin AD, Lehman SM (2013) Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Sci Rep 3:1–5CrossRefGoogle Scholar
  54. Veilleux CC, Bolnick DA (2009) Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol 71:86–90CrossRefPubMedGoogle Scholar
  55. Wheelwright NT (1985) Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66:808–818CrossRefGoogle Scholar
  56. Wheelwright NT, Janson CH (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. Am Nat 126:777–799CrossRefGoogle Scholar
  57. Wheelwright NT, Orians G (1981) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology and constraints on coevolution. Am Nat 119:402–413CrossRefGoogle Scholar
  58. Whitney KD (2009) Comparative evolution of flower and fruit morphology. Proc R Soc Lond B 276:2941–2947CrossRefGoogle Scholar
  59. Worman CO, Chapman CA (2005) Seasonal variation in tropical ripe fruit quality and the response of three frugivores. J Trop Ecol 21:689–697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kim Valenta
    • 1
    • 2
  • Kevin A. Brown
    • 3
  • Radoniaina R. Rafaliarison
    • 4
  • Sarah A. Styler
    • 5
  • Derek Jackson
    • 6
  • Shawn M. Lehman
    • 1
  • Colin A. Chapman
    • 2
    • 7
  • Amanda D. Melin
    • 8
  1. 1.Department of Anthropology, 19 Russell StreetUniversity of TorontoTorontoCanada
  2. 2.Department of AnthropologyMcGill UniversityMontrealCanada
  3. 3.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  4. 4.Department of PaleontologyUniversity of AntananarivoAntananarivoAfrica
  5. 5.Leibniz Institute for Tropospheric ResearchLeipzigGermany
  6. 6.Department of ChemistryUniversity of TorontoTorontoCanada
  7. 7.Wildlife Conservation SocietyBronxUSA
  8. 8.Department of AnthropologyWashington UniversitySt. LouisUSA

Personalised recommendations