Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L

Abstract

The evolution of polyandry is one of most highly debated topics in sociobiology. One hypothesis suggests genetic diversity increases resistance against the wide range of parasites and diseases affecting colonies. We investigated effects of manipulating genetic diversity on colony population size, fall Varroa population, Varroa and bee mortality rates, virus prevalence and concentration, and prevalence of Nosema apis Z. and Nosema ceranae F. Sister queens selected for resistance to Varroa were inseminated with either mixed semen from 12 drone sources (genetically diverse colonies, GDC) or single drone inseminated from 12 drone sources (genetically similar colonies, GSC), and colonies from these queens were compared to unrelated queens that were open-mated. When exposed to parasites and pathogens, open-mated colonies (OMC) and GDCs had larger worker populations before winter than GSCs. The bees of GDCs had higher Varroa mortality rates than those of GSCs in the field study. Within the instrumentally inseminated treatments, three pathogens occurred at lower prevalence (acute bee paralysis virus (ABPV) and N. ceranae) or concentrations (deformed wing virus, DWV) in GDCs than in GSCs. Both GDCs and GSCs that had been selected for resistance to Varroa had lower DWV concentration in spring when compared to unselected OMCs. Colonies inseminated by multiple drones and having greater within-colony genetic diversity showed reduced prevalence, concentrations in about a quarter of the pathogens assayed relative to genetically uniform colonies, and the reverse pattern was never observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ariana A, Ebadi R, Tahmasebi G (2002) Laboratory evaluation of some plant essences to control Varroa destructor (Acari: Varroidae). Exp Appl Acarol 27:319–327

    Article  PubMed  Google Scholar 

  2. Azzami K, Ritter W, Tautz J, Beier H (2012) Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Arch Virol 157:689–702

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    CAS  Article  Google Scholar 

  4. Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:1639–1643

    CAS  Article  PubMed  Google Scholar 

  5. Bailey L, Gibbs AJ, Woods RD (1963) Two viruses from adult honey bees (Apis mellifera Linnaeus). Virology 21:390–395

  6. Benjeddou M, Leat N, Allsopp M, Davison S (2001) Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Appl Environ Microbiol 67:2384–2387

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. Beye M, Hasselmann M, Fondrk M, Page R Jr, Omholt S (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    CAS  Article  PubMed  Google Scholar 

  8. Boecking O, Bienefeld K, Drescher W (2000) Heritability of the Varroa‐specific hygienic behaviour in honey bees (Hymenoptera: Apidae). J Anim Breed Genet 117:417–424

    Article  Google Scholar 

  9. Bowen-Walker PL, Martin SJ, Gunn A (1999) The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol 73:101–106

    Article  PubMed  Google Scholar 

  10. Burgett M, Burikam I (1985) Number of adult honey bees (Hymenoptera: Apidae) occupying a comb: a standard for estimating colony populations. J Econ Entomol 78:1154–1156

    Article  Google Scholar 

  11. Bush A, Lafferty K, Lotz J, Shostak A (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    CAS  Article  PubMed  Google Scholar 

  12. Cantwell GE (1970) Standard methods for counting Nosema spores. Am Bee J 110:222–223

    Google Scholar 

  13. Chen YP, Evans J, Feldlaufer M (2006) Horizontal and vertical transmission of viruses in the honeybee, Apis mellifera. J Invertebr Pathol 92:152–159

    Article  PubMed  Google Scholar 

  14. Chen YP, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97:186–188

    Article  PubMed  Google Scholar 

  15. Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    CAS  Article  PubMed  Google Scholar 

  16. Chen YP, Zhao Y, Hammond J, Hsu HT, Evans J, Feldlaufer M (2004) Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J Invertebr Pathol 87:84–93

    CAS  Article  PubMed  Google Scholar 

  17. Cobey S (2005) A versatile queen rearing and banking system. 1. The “Cloake Board Method” of queen rearing. Am Bee J 145:308–311

    Google Scholar 

  18. Cole BJ, Smith AA, Huber ZJ, Wiernasz DC (2010) The structure of foraging activity in colonies of the harvester ant, Pogonomyrmex occidentalis. Behav Ecol 21:337–342

    Article  Google Scholar 

  19. Currie RW (1987) The biology and behaviour of drones. Bee World 68:129–143

    Article  Google Scholar 

  20. Currie RW, Tahmasbi GH (2008) The ability of high- and low-grooming lines of honey bees to remove the parasitic mite Varroa destructor is affected by environmental conditions. Can J Zool 86:1059–1067

    Article  Google Scholar 

  21. Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012) Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol 78:981–987

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  22. de Miranda JR, Fries I (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J Invertebr Pathol 98:184–189

    Article  PubMed  Google Scholar 

  23. Decanini LI, Collins AM, Evans JD (2007) Variation and heritability in immune gene expression by diseased honeybees. J Hered 98:195–201

    CAS  Article  PubMed  Google Scholar 

  24. DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J Insect Physiol 56:1184–1191

    CAS  Article  PubMed  Google Scholar 

  25. Delaney D, Meixner M, Schiff N, Sheppard W (2009) Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers. Ann Entomol Soc Am 102:666–673

    Article  Google Scholar 

  26. Delfinado-Baker M (1984) Acarapis woodi in the United States. Am Bee J 124:805–806

    Google Scholar 

  27. Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr, Evans JD, Chen Y (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92:151–155

    Article  PubMed  Google Scholar 

  28. Evans JD, Aronstein K, Chen Y, Hetru C, Imler JL, Jiang H, Kanost M, Thompson G, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. Evans JD, Pettis JS (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59:2270–2274

    CAS  Article  PubMed  Google Scholar 

  30. Evans JD, Spivak M (2010) Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 103:S62–S72

    Article  PubMed  Google Scholar 

  31. Fries I, Camazine S (2001) Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32:199–214

    Article  Google Scholar 

  32. Fries I, Feng F, daSilva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365

    Article  Google Scholar 

  33. Fuchs S, Moritz RFA (1998) Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 9:269–275

    Google Scholar 

  34. Gatien P, Currie RW (2003) Timing of acaricide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees. Can Entomol 135:749–763

    Article  Google Scholar 

  35. Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    CAS  Article  PubMed  Google Scholar 

  36. Harbo J (1985) Instrumental insemination of queen bees. Am Bee J 125:197–202

    Google Scholar 

  37. Harbo JR, Harris JW (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J Econ Entomol 92:261–265

    Article  Google Scholar 

  38. Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421

    Article  PubMed  Google Scholar 

  39. Higes M, Martin R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95

    CAS  Article  PubMed  Google Scholar 

  40. Huang WF, Jiang JH, Chen YW, Wang CH (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37

    Article  Google Scholar 

  41. Hughes WO, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf‐cutting ant societies. Evolution 58:1251–1260

    Article  PubMed  Google Scholar 

  42. Laidlaw HH, Page R (1997) Queen rearing and bee breeding. Wicwas Press, Cheshire, Connecticut

    Google Scholar 

  43. Lee G, Brown M, Oldroyd B (2013) Inbred and outbred honey bees (Apis mellifera) have similar innate immune responses. Insect Soc 60:97–102

    Article  Google Scholar 

  44. Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I (2007) Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. J Gen Virol 88:3428–3438

    CAS  Article  PubMed  Google Scholar 

  45. Mattila HR, Burke KM, Seeley TD (2008) Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers. Proc R Soc B Biol Sci 275:809–816

    Article  Google Scholar 

  46. Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One 7, e32962

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  47. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    CAS  Article  PubMed  Google Scholar 

  48. Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova E, Buechler R (2010) Conserving diversity and vitality for honey bee breeding. J Apic Res 49:85–92

    Article  Google Scholar 

  49. Myerscough MR, Oldroyd BP (2004) Simulation models of the role of genetic variability in social insect task allocation. Insect Soc 51:146–152

    Article  Google Scholar 

  50. Neumann P, Moritz R (2000) Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insect Soc 47:271–279

    Article  Google Scholar 

  51. Oldroyd BP, Rinderer T, Harbo J, Buco S (1992) Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann Entomol Soc Am 85:335–343

    Article  Google Scholar 

  52. Page RE (1980) The evolution of multiple mating-behavior by honey bee queens Apis mellifera L. Genetics 96:263–273

    PubMed Central  PubMed  Google Scholar 

  53. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248

    Article  Google Scholar 

  54. Palmer KA, Oldroyd BP (2001) Mating frequency in Apis florea revisited (Hymenoptera, Apidae). Insect Soc 48:40–43

    Article  Google Scholar 

  55. Peng YS, Fang Y, Xu S, Ge L (1987) The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60

    Article  Google Scholar 

  56. Persico M, Capasso M, Persico E, Svelto M, Russo R, Spano D, Croce L, La Mura V, Moschella F, Masutti F, Torella R, Tiribelli C, Iolascon A (2007) Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: insulin resistance and response to antiviral therapy. Hepatology 46:1009–1015

    CAS  Article  PubMed  Google Scholar 

  57. Ribiere M, Triboulot C, Mathieu L, Aurieres C, Faucon JP, Pepin M (2002) Molecular diagnosis of chronic bee paralysis virus infection. Apidologie 33:339–351

    CAS  Article  Google Scholar 

  58. Rinderer TE, Oldroyd BP, Frake AM, Guzman LI, Bourgeois L (2012) Responses to Varroa destructor and Nosema ceranae by several commercial strains of Australian and North American honeybees (Hymenoptera: Apidae). Aust J Entomol. doi:10.1111/aen.12003

    Google Scholar 

  59. Rothenbuhler WC (1964) Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. Am Zool 4:111–123

    CAS  PubMed  Google Scholar 

  60. SAS (1999) SAS/STAT user’s guide. SAS Institute Inc., Cary, North Carolina

    Google Scholar 

  61. Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc B 354:507–515

    Article  Google Scholar 

  62. Schmid-Hempel P, Loosli R (1998) A contribution to the knowledge of Nosema infections in bumble bees, Bombus spp. Apidologie 29:525–535

    Article  Google Scholar 

  63. Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc B Biol Sci 274:67–72

    Article  Google Scholar 

  64. Shen MQ, Cui LW, Ostiguy N, Cox-Foster D (2005) Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J Gen Virol 86:2281–2289

    CAS  Article  PubMed  Google Scholar 

  65. Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social hymenoptera. Am Nat 131:602–610

    Article  Google Scholar 

  66. Shykoff JA, Schmid-Hempel P (1991) Parasites and the advantage of genetic variability within social insect colonies. Proc R Soc London Ser B 243:55–58

    Article  Google Scholar 

  67. Snedecor G, Cochran W (1980) Statistical methods. The Iowa State University Press, Ames

    Google Scholar 

  68. Spivak M, Downey DL (1998) Field assays for hygienic behavior in honey bees (Hymenoptera : Apidae). J Econ Entomol 91:64–70

    Article  Google Scholar 

  69. Stoltz D, Shen XR, Boggis C, Sisson G (1995) Molecular diagnosis of Kashmir bee virus infection. J Apic Res 34:153–160

    CAS  Google Scholar 

  70. Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc London Ser B 270:99–103

    Article  Google Scholar 

  71. Tarpy DR, Page RE (2002) Sex determination and the evolution of polyandry in honey bees (Apis mellifera). Behav Ecol Sociobiol 52:143–150

    Article  Google Scholar 

  72. Tarpy DR, Seeley TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93:195–199

    CAS  Article  PubMed  Google Scholar 

  73. Ugelvig LV, Kronauer DJ, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc B Biol Sci 277:2821–2828

    Article  Google Scholar 

  74. Underwood RM, Currie RW (2003) The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varoidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Exp Appl Acarol 29:303–313

    Article  PubMed  Google Scholar 

  75. Underwood RM, Currie RW (2004) Indoor winter fumigation of Apis mellifera (Hymenoptera : Apidae) colonies infested with Varroa destructor (Acari : Varroidae) with formic acid is a potential control alternative in northern climates. J Econ Entomol 97:177–186

    CAS  Article  PubMed  Google Scholar 

  76. van Baalen M, Beekman M (2006) The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am Nat 167:568–577

    Article  PubMed  Google Scholar 

  77. Wattanachaiyingcharoen W, Oldroyd BP, Wongsiri S, Palmer K, Paar J (2003) A scientific note on the mating frequency of Apis dorsata. Apidologie 34:85–86

    Article  Google Scholar 

  78. Wilkinson D, Smith GC (2002) A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol Model 148:263–275

    Article  Google Scholar 

  79. Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    CAS  Article  PubMed  Google Scholar 

  80. Wilson-Rich N, Tarpy DR, Starks PT (2012) Within- and across-colony effects of hyperpolyandry on immune function and body condition in honey bees (Apis mellifera). J Insect Physiol 58:402–407

    CAS  Article  PubMed  Google Scholar 

  81. Woyciechowski M, Krol E (2001) Worker genetic diversity and infection by Nosema apis in honey bee colonies. Folia Biol 49:107–112

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding provided to RWC from Manitoba Queen Breeders Association, Manitoba Rural Adaptation Council (MRAC), the Canadian Bee Research Fund, and Manitoba Beekeepers Association. We also acknowledge financial support from University of Manitoba Graduate Fellowship to SDD. We thank Lisa Babey, Dave Holder, Rassol Bahreini, Sarah Brown, and Erica Lowe for providing technical support. We thank Dave Rosenberg for reviewing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suresh D. Desai.

Additional information

Communicated by S. Cremer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desai, S.D., Currie, R.W. Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L. Behav Ecol Sociobiol 69, 1527–1541 (2015). https://doi.org/10.1007/s00265-015-1965-2

Download citation

Keywords

  • Honey bee
  • Apis mellifera
  • Genetic diversity
  • Bee virus
  • Polyandry