Behavioral Ecology and Sociobiology

, Volume 69, Issue 8, pp 1365–1375 | Cite as

Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant

  • Abel BernadouEmail author
  • Josefine Busch
  • Jürgen Heinze
Original Paper


In many species of social insects, division of non-reproductive labor is to some extent affected by age, in that younger individuals engage in activities in the nest, whereas older individuals forage. While the link between age and task is less robust than originally thought, the transition from nursing to foraging is associated with large changes in gene expression, neuroanatomy, and physiology and therefore seems largely irreversible. Here, we investigate division of labor in the thelytokous ant Platythyrea punctata. Since it forms clonal colonies, it is an ideal model to investigate the behavioral flexibility of individuals and the proximate mechanisms underlying division of labor, while avoiding confounding factors, such as variation in genotype or morphology. We found that nurses and foragers of P. punctata differ in residual life span, fat content, fecundity, and the propensity to engage in dominance interactions. However, age-based division of labor appears to be flexible: foragers can revert to nursing and egg laying, even though they appear less fecund than original nurse workers. Interestingly, the transition from foraging to nursing seemed to slow down aging and senescence.


Ponerinae Division of labor Behavioral reversion Dominance hierarchy Senescence 



The study was supported by DFG (He 1623/33). We thank Bartosz Walter, Marion Füßl, Tina Wanke, Katrin Kellner, and Jon N. Seal for their help in collecting the ants, Bartosz Walter and Bert Rivera Marchand for their help with obtaining permits. Research in Puerto Rico was permitted by USDA Forest Service and Departamento de Recursos Naturales y Ambientales, 2012-IC-036.

We thank B. Markó and E. Csata for fruitful discussions on statistical analysis, O. Rueppell, T. Czaczkes, and two referees for constructive comments on previous versions of this paper.


  1. Amdam GV, Aase ALT, Seehuus SC, Fondrk MK, Norberg K, Hartfelder K (2005) Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40:939–947PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bajda M, Strachecka A, Paleolog J (2013) Rewersja procesu starzenia u pszczół miodnych (Apis mellifera)? Med Weter 69:707–711Google Scholar
  3. Baker N, Wolschin F, Amdam GV (2012) Age-related learning deficits can be reversible in honeybees Apis mellifera. Exp Gerontol 47:764–772PubMedCrossRefGoogle Scholar
  4. Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism by eusocial bees. Annu Rev Entomol 53:19–37PubMedCrossRefGoogle Scholar
  5. Blanchard GB, Orledge GM, Reynolds SE, Franks NR (2000) Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim Behav 59:723–738PubMedCrossRefGoogle Scholar
  6. Breed MD, Harrison JM (1988) Worker size, ovary development and division of labor in the giant tropical ant, Paraponera clavata (Hymenoptera: Formicidae). J Kansas Entomol Soc 61:285–291Google Scholar
  7. Brunner E, Kellner K, Heinze J (2009) Policing and dominance behaviour in the parthenogenetic ant Platythyrea punctata. Anim Behav 78:1427–1431CrossRefGoogle Scholar
  8. Daugherty THF, Toth AL, Robinson GE (2011) Nutrition and division of labor: effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol Ecol 20:5337–5347PubMedCrossRefGoogle Scholar
  9. Dolezal AG, Brent CS, Hölldobler B, Amdam GV (2012) Worker division of labor and endocrine physiology are associated in the harvester ant, Pogonomyrmex californicus. J Exp Biol 215:454–460PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dolezal AG, Johnson J, Hölldobler B, Amdam GV (2013) Division of labor is associated with age-independent changes in ovarian activity in Pogonomyrmex californicus harvester ants. J Insect Physiol 59:519–524PubMedCrossRefGoogle Scholar
  11. Fénéron R, Durand JL, Jaisson P (1996) Relation between behaviour and physiological maturation in a ponerine ant. Behaviour 133:791–806CrossRefGoogle Scholar
  12. Foster RL, Brunskill A, Verdirame D, O'Donnell S (2004) Reproductive physiology, dominance interactions, and division of labour among bumble bee workers. Physiol Entomol 29:327–334CrossRefGoogle Scholar
  13. Fresneau D (1984) Développement ovarien et statut social chez une fourmi primitive Neoponera obscuricornis Emery (Hym.: Formicidae, Ponerinae). Insect Soc 31:387–402CrossRefGoogle Scholar
  14. Fuchikawa T, Okada Y, Miyatake T, Tsuji K (2014) Social dominance modifies behavioral rhythm in a queenless ant. Behav Ecol Sociobiol 68:1843–1850CrossRefGoogle Scholar
  15. Giraudoux P (2014) pgirmess: data analysis in ecology. R package version 1.5.9.
  16. Gordon DM (1989) Dynamics of task switching in harvester ants. Anim Behav 38:194–204CrossRefGoogle Scholar
  17. Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124CrossRefGoogle Scholar
  18. Hartmann A, Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57:2424–2429PubMedCrossRefGoogle Scholar
  19. Heinze J, Hölldobler B (1995) Thelytokous parthenogenesis and dominance hierarchies in the ponerine ant, Platythyrea punctata. Naturwissenschaften 82:40–41Google Scholar
  20. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15:1371–1373PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hölldobler B, Wilson EO (1986) Ecology and behavior of the primitive cryptobiotic ant Prionopelta amabilis. Insect Soc 33:45–58CrossRefGoogle Scholar
  22. Hölldobler B, Wilson EO (1990) The ants. Belknap, CambridgeCrossRefGoogle Scholar
  23. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  24. Kellner K, Heinze J (2011) Mechanism of facultative parthenogenesis in the ant Platythyrea punctata. Evol Ecol 25:77–89CrossRefGoogle Scholar
  25. Kellner K, Barth B, Heinze J (2010) Colony fusion causes within-colony variation in a parthenogenetic ant. Behav Ecol Sociobiol 64:737–746CrossRefGoogle Scholar
  26. Korczyńska J, Szczuka A, Symonowicz B, Wnuk A, Anna GS, Mazurkiewicz PJ, Studnicki M, Godzińska EJ (2014) The effects of age and past and present behavioral specialization on behavior of workers of the red wood ant Formica polyctena Först. during nestmate reunion tests. Behav Process 107:29–41CrossRefGoogle Scholar
  27. Kronauer DJ, Pierce NE, Keller L (2012) Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 21:5221–5235PubMedCrossRefGoogle Scholar
  28. Kuszewska K, Woyciechowski M (2013) Reversion in honeybee, Apis mellifera, workers with different life expectancies. Anim Behav 85:247–253CrossRefGoogle Scholar
  29. Martin P, Bateson P (1986) Measuring behaviour. Cambridge University Press, CambridgeGoogle Scholar
  30. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  31. Münch D, Baker N, Rasmussen EM, Shah AK, Kreibich CD, Heidem LE, Amdam GV (2013) Obtaining specimens with slowed, accelerated and reversed aging in the honey bee model. J Vis Exp 78Google Scholar
  32. Nakata K (1995) Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol 13:113–123CrossRefGoogle Scholar
  33. Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413PubMedCrossRefGoogle Scholar
  34. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  35. Page RE, Peng CYS (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 36:695–711PubMedCrossRefGoogle Scholar
  36. Penick CA, Liebig J, Brent CS (2011) Reproduction, dominance, and caste: endocrine profiles of queens and workers of the ant Harpegnathos saltator. J Comp Physiol A 197:1063–1071CrossRefGoogle Scholar
  37. Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117.
  38. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
  39. Ravary F, Jaisson P (2004) Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insect Soc 51:67–73CrossRefGoogle Scholar
  40. Ravary F, Lecoutey E, Kaminski G, Chaline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 15:1308–1312CrossRefGoogle Scholar
  41. Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2014) Support functions and datasets for Venables and Ripley’s MASS. R package version 7.3-35.
  42. Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665PubMedCrossRefGoogle Scholar
  43. Robinson GE, Page RE, Strambi C, Strambi A (1992) Colony integration in honey bees: mechanisms of behavioral reversion. Ethol 90:336–348CrossRefGoogle Scholar
  44. Robinson EJH, Feinermann O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659PubMedCrossRefGoogle Scholar
  45. Schilder K, Heinze J, Gross R, Hölldobler B (1999a) Microsatellites reveal clonal structure of populations of the thelytokous ant Platythyrea punctata (F. Smith) (Hymenoptera; Formicidae). Mol Ecol 8:1497–1507PubMedCrossRefGoogle Scholar
  46. Schilder K, Heinze J, Hölldobler B (1999b) Colony structure and reproduction in the thelytokous parthenogenetic ant Platythyrea punctata (F. Smith)(Hymenoptera, Formicidae). Insect Soc 46:150–158CrossRefGoogle Scholar
  47. Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, PrincetonCrossRefGoogle Scholar
  48. Sendova-Franks A, Franks NR (1993) Task allocation in ant colonies within variable environments (a study of temporal polyethism: experimental). Bull Math Biol 55:75–96CrossRefGoogle Scholar
  49. Siegel S, Castellan NJ (1988) Non-parametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  50. Smeeton L (1982) The effect of age on the production of reproductive eggs by workers of Myrmica rubra L. (Hym. Formicidae). Insect Soc 29:465–474CrossRefGoogle Scholar
  51. Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748PubMedCrossRefGoogle Scholar
  52. Smith CR, Suarez AV, Tsutsui ND, Wittman SE, Edmonds B, Freauff A, Tillberg CV (2011) Nutritional asymmetries are related to division of labor in a queenless ant. PLoS One 6, e24011PubMedCentralPubMedCrossRefGoogle Scholar
  53. Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423PubMedCrossRefGoogle Scholar
  54. Stuart RJ, Page RE (1991) Genetic component to division of labor among workers of a leptothoracine ant. Naturwissenschaften 78:375–377CrossRefGoogle Scholar
  55. Therneau T (2012) Coxme: mixed effects cox models. R package version 2.2–3.
  56. Tibbetts EA, Levy S, Donajkowski K (2011) Reproductive plasticity in Polistes paper wasp workers and the evolutionary origins of sociality. J Insect Physiol 57:995–999PubMedCrossRefGoogle Scholar
  57. Toth AL, Robinson GE (2005) Worker nutrition and division of labour in honeybees. Anim Behav 69:427–435CrossRefGoogle Scholar
  58. Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208:4641–4649PubMedCrossRefGoogle Scholar
  59. Tsuji K (1988) Obligate parthenogenesis and reproductive division of labor in the Japanese queenless ant Pristomyrmex pungens. Behav Ecol Sociobiol 23:247–255CrossRefGoogle Scholar
  60. Tsuji K (1990) Reproductive division of labour related to age in the Japanese queenless ant, Pristomyrmex pungens. Anim Behav 39:843–849CrossRefGoogle Scholar
  61. Tsuji K, Dobata S (2011) Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecol News 15:91–99Google Scholar
  62. Villet MH (1991a) Social differentiation and division of labour in the queenless ant Platythyrea schultzei Forel 1910 (Hymenoptera Formicidae). Trop Zool 4:13–29CrossRefGoogle Scholar
  63. Villet MH (1991b) Reproduction and division of labour in Platythyrea cf. cribrinodis (Gerstaecker 1858) (Hymenoptera Formicidae): comparisons of individuals, colonies and species. Trop Zool 4:209–231CrossRefGoogle Scholar
  64. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: various R programming tools for plotting data. R package version 2.16.0.
  65. Weissel N, Mitesser O, Poethke HJ, Strohm E (2012) Availability and depletion of fat reserves in halictid foundress queens with a focus on solitary nest founding. Insect Soc 59:67–74CrossRefGoogle Scholar
  66. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  67. Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495PubMedCrossRefGoogle Scholar
  68. Wnuk A, Wiater A, Godzińska E (2011) Effect of past and present behavioural specialization on brain levels of biogenic amines in workers of the red wood ant Formica polyctena. Physiol Entomol 36:54–61CrossRefGoogle Scholar
  69. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Zoology/Evolutionary BiologyUniversität RegensburgRegensburgGermany

Personalised recommendations