Skip to main content

Advertisement

Log in

Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Carotenoid-based integument coloration is extremely widespread in animals and commonly used as an honest signal of condition in sexual selection. Besides being used for color expression, carotenoids have antioxidant and immunomodulatory activity. Being a limited resource, carotenoid allocation to competing demands generates a trade-off. Recent studies, however, suggest that the antioxidant role of carotenoids might not be as important as previously thought. To shed light on the mechanism maintaining carotenoid-based signal honesty in the black-legged kittiwake (Rissa tridactyla), we supplemented males and females with dietary yellow xanthophylls (lutein and zeaxanthin) during the chick-rearing period, when male coloration may be a good indicator of future reproductive success. The supplementation affected plasma carotenoid levels similarly in males and females, i.e., it increased the levels of lutein but decreased the levels of total astaxanthin, one of the main pigments coloring integuments in this species. Supplemented adults and their chicks had stronger immune response than controls, suggesting that yellow xanthophylls enhance the innate immune system in kittiwakes. However, supplementation caused sex-specific effects on integument coloration and oxidative stress. Supplemented males had duller integuments, but similar oxidative damages compared to control males, while supplemented females had more colorful integuments, but higher oxidative damages than control females. Because the increase in lutein was associated with a decrease in other potential antioxidants (i.e., astaxanthin and vitamin A), the role of carotenoids as antioxidants in kittiwakes remains undetermined. Our results, however, indicate that the trade-off responses to carotenoid availability are sex-specific in kittiwakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659

    Article  PubMed  Google Scholar 

  • Andersson S, Prager M (2006) Quantifying colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Mechanisms and measurements. Harvard University Press, London

    Google Scholar 

  • Baeta R, Faivre B, Motreuil S, Gaillard M, Moreau J (2008) Carotenoid trade-off between parasitic resistance and sexual display: an experimental study in the blackbird (Turdus merula). Proc R Soc Lond B 275:427–434

    Article  CAS  Google Scholar 

  • Benito MM, Gonzalez-Solis J, Becker PH (2011) Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J Comp Physiol B 181:539–549

    CAS  PubMed  Google Scholar 

  • Bertrand S, Faivre B, Sorci G (2006) Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants? J Exp Biol 209:4414–4419

    Article  CAS  PubMed  Google Scholar 

  • Biard C, Surai PF, Møller AP (2006) Carotenoid availability in diet and phenotype of blue and great tit nestlings. J Exp Biol 209:1004–1015

    Article  CAS  PubMed  Google Scholar 

  • Blévin P, Tartu S, Angelier F, Leclaire S, Bustnes JO, Moe B, Herzke D, Gabrielsen GW, Chastel O (2014) Integument colouration in relation to persistent organic pollutants and body condition in arctic breeding black-legged kittiwakes (Rissa tridactyla). Sci Total Environ 470–471:248–254

    Article  PubMed  Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    Article  CAS  PubMed  Google Scholar 

  • Casagrande S, Costantini D, Fanfani A, Tagliavini J, Dell’Omo G (2007) Patterns of serum carotenoid accumulation and skin colour variation in kestrel nestlings in relation to breeding conditions and different terms of carotenoid supplementation. J Comp Physiol B 177:237–245

    Article  CAS  PubMed  Google Scholar 

  • Casagrande S, Costantini D, Dell’Omo G, Tagliavini J, Groothuis T (2012) Differential effects of testosterone metabolites oestradiol and dihydrotestosterone on oxidative stress and carotenoid-dependent colour expression in a bird. Behav Ecol Sociobiol 66:1319–1331

    Article  Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Costantini D, Dell’Omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Phys A 145:137–142

    Article  Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Article  Google Scholar 

  • Costantini D, Coluzza C, Fanfani A, Dell’Omo G (2007a) Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J Comp Physiol B 177:723–731

    Article  CAS  PubMed  Google Scholar 

  • Costantini D, Fanfani A, Dell’Omo G (2007b) Carotenoid availability does not limit the capability of nestling kestrels (Falco tinnunculus) to cope with oxidative stress. J Exp Biol 210:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Cucco M, Guasco B, Malacarne G, Ottonelli R (2006) Effects of β-carotene supplementation on chick growth, immune status and behaviour in the grey partridge, Perdix perdix. Behav Process 73:325–332

    Article  CAS  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Article  PubMed  Google Scholar 

  • Doutrelant C, Grégoire A, Gomez D, Staszewski V, Arnoux E, Tveraa T, Faivre B, Boulinier T (2013) Colouration in Atlantic puffins and blacklegged kittiwakes: monochromatism and links to body condition in both sexes. J Avian Biol 44:451–460

    Google Scholar 

  • Dugas MB, McGraw KJ (2011) Proximate correlates of carotenoid-based mouth coloration in nestling house sparrows. Condor 113:691–700

    Article  Google Scholar 

  • Eens M, Van Duyse E, Berghman L, Pinxten R (2000) Shield characteristics are testosterone-dependent in both male and female moorhens. Horm Behav 37:126–134

    Article  CAS  PubMed  Google Scholar 

  • El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio S, Cucco M, Malacarne G (2002) The effect of a carotenoid-rich diet on immunocompetence and behavioural performances in moorhen chicks. Ethol Ecol Evol 14:149–156

    Article  Google Scholar 

  • Fitze PS, Tschirren B, Gasparini J, Richner H (2007) Carotenoid-based plumage colors and immune function: Is there a trade-off for rare carotenoids? Am Nat 169:137–144

    Article  Google Scholar 

  • Gabrielsen GW, Mehlum F, Nagy KA (1987) Daily energy expenditure and energy utilization of free-ranging black-legged kittiwakes. Condor 89:126–132

    Article  Google Scholar 

  • Gill VA, Hatch SA (2002) Components of productivity in black-legged kittiwakes Rissa tridactyla: response to supplemental feeding. J Avian Biol 33:113–126

    Article  Google Scholar 

  • Giraudeau M, Sweazea K, Butler MW, McGraw KJ (2013) Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp Biochem Physiol A 166:406–413

    Article  CAS  Google Scholar 

  • Gomez D (2007) AVICOL, a program to analyse spectrometric data. Available upon request from the author at dodogomez@yahoo.fr

  • Hamilton DG, Whiting MJ, Pryke SR (2013) Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards. Behav Ecol 24:1138–1149

    Article  Google Scholar 

  • Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683

    CAS  PubMed  Google Scholar 

  • Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    Article  PubMed  Google Scholar 

  • Hatch SA (2013) Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar Ecol Prog Ser 477:271–284

    Article  Google Scholar 

  • Hill GE (2006) Female mate choice for ornamental coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 2. Function and evolution. Harvard University Press, London

    Google Scholar 

  • Hill GE, Johnson JD (2012) The vitamin A-redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150

    Article  PubMed  Google Scholar 

  • Horak P, Saks L, Zilmer M, Karu U, Zilmer K (2007) Do dietary antioxidants alleviate the cost of immune activation? An experiment with greenfinches. Am Nat 170:625–635

    Article  PubMed  Google Scholar 

  • Huggins KA, Navara KJ, Mendonca MT, Hill GE (2010) Detrimental effects of carotenoid pigments: the dark side of bright coloration. Naturwissenschaften 97:637–644

    Article  CAS  PubMed  Google Scholar 

  • Intitute Inc SAS (1999) SAS user’s guide, version 8. Sas Institute Inc., Cary, NC

    Google Scholar 

  • Isaksson C, Andersson S (2008) Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc R Soc Lond B 275:309–314

    Article  CAS  Google Scholar 

  • Jodice PGR, Lanctot RB, Gill VA, Roby DD, Hatch SA (2000) Sexing adult black-legged kittiwakes by DNA, behavior, and morphology. Waterbirds 23:405–415

    Article  Google Scholar 

  • Karu U, Saks L, Horak P (2008) Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol Res 23:931–935

    Article  CAS  Google Scholar 

  • Kodric-Brown A (1989) Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav Ecol Sociobiol 25:393–401

    Article  Google Scholar 

  • Kostic D, White WS, Olson JA (1995) Intestinal absorption, serum clearance, and interactions between lutein and beta-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr 62:604–610

    CAS  PubMed  Google Scholar 

  • LaFountain AM, Prum RO, Frank HA (2015) Diversity, physiology, and evolution of avian plumage carotenoids and the role of carotenoid–protein interactions in plumage color appearance. Arch Biochem Biophys (published online). doi:10.1016/j.abb.2015.01.016

    Google Scholar 

  • Larcombe SD, Mullen W, Alexander L, Arnold KE (2010) Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97:903–913

    Article  CAS  PubMed  Google Scholar 

  • Leclaire S (2010) Signaux sexuels, choix du partenaire et investissement parental chez la mouette tridactyle Rissa tridactyla. PhD thesis, Université Toulouse III-Paul Sabatier

  • Leclaire S, Helfenstein F, Degeorges A, Wagner RH, Danchin E (2010) Family size and sex-specific parental effort in black-legged kittiwakes. Behaviour 147:1841–1862

    Article  Google Scholar 

  • Leclaire S, Bourret V, Wagner RH, Hatch SA, Helfenstein F, Chastel O, Danchin E (2011a) Behavioral and physiological responses to male handicap in chick-rearing black-legged kittiwakes. Behav Ecol 22:1156–1165

    Article  Google Scholar 

  • Leclaire S, White J, Arnoux E, Faivre B, Vetter N, Hatch SA, Danchin E (2011b) Integument coloration signals reproductive success, heterozygosity, and antioxidant levels in chick-rearing black-legged kittiwakes. Naturwissenschaften 98:773–782

    Article  CAS  PubMed  Google Scholar 

  • Liebl AL, Martin LB II (2009) Simple quantification of blood and plasma antimicrobial capacity using spectrophotometry. Funct Ecol 23:1091–1096

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311

    Article  Google Scholar 

  • Lucas A, Morales J, Velando A (2014) Differential effects of specific carotenoids on oxidative damage and immune response of gull chicks. J Exp Biol 217:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin DC, Murphy TG, Tarvin KA (2014) Blood parasite infection differentially relates to carotenoid‐based plumage and bill color in the American goldfinch. Ecol Evol 4:3210–3217

    Article  PubMed Central  PubMed  Google Scholar 

  • Marri V, Richner H (2014) Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J Exp Biol 217:1478–1484

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Padilla J, Mougeot F, Pérez-Rodríguez L, Bortolotti GR (2007) Nematode parasites reduce carotenoid-based signalling in male red grouse. Biol Lett 3:161–164

    Article  PubMed Central  PubMed  Google Scholar 

  • Matson KD, Tieleman IB, Klasing KC (2006) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Phys Biochem Zool 79:556–564

    Article  Google Scholar 

  • McGraw KJ (2006a) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, vol. 1. Mechanisms and measurements. Harvard University Press, Cambridge

    Google Scholar 

  • McGraw KJ (2006b) Sex steroid dependence of carotenoid-based coloration in female zebra finches. Physiol Behav 88:347–352

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Toomey MB (2010) Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies. Physiol Biochem Zool 83:97–109

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Hill GE, Navara KJ, Parker RS (2008a) Differential accumulation and pigmentation ability of dietary carotenoids in colorful finches. Physiol Biochem Zool 77:484–491

    Article  Google Scholar 

  • McGraw KJ, Tourville EA, Butler MW (2008b) A quantitative comparison of the commonly used methods for extracting caroteoids from avian plasma. Behav Ecol Sociobiol 62:1991–2002

    Article  Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2011) Carotenoids bolster immunity during moult in a wild songbird with sexually selected plumage coloration. Biol J Linn Soc 102:560–572

    Article  Google Scholar 

  • Merkling T, Leclaire S, Danchin E, Lhuillier E, Wagner RH, White J, Hatch SA, Blanchard P (2012) Food availability and offspring sex in a monogamous seabird: insights from an experimental approach. Behav Ecol 23:751–758

    Article  Google Scholar 

  • Moe B, Langseth I, Fyhn M, Gabrielsen GW, Bech C (2002) Changes in body condition in breeding kittiwakes Rissa tridactyla. J Avian Biol 33:225–234

    Article  Google Scholar 

  • Montgomerie R (2006) Analyzing colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Mechanisms and measurements. Harvard University Press, Cambridge

    Google Scholar 

  • Mougeot F, Martinéz-Padilla J, Pérez-Rodríguez L, Bortolotti GR (2007a) Carotenoid-based colouration and ultraviolet reflectance of the sexual ornaments of grouse. Behav Ecol Sociobiol 61:741–751

    Article  Google Scholar 

  • Mougeot F, Pérez-Rodríguez L, Martínez-Padilla J, Leckie F, Redpath SM (2007b) Parasites, testosterone and honest carotenoid-based signalling of health. Funct Ecol 21:886–898

    Article  Google Scholar 

  • Olsen RE, Baker RTM (2006) Lutein does not influence flesh astaxanthin pigmentation in the Atlantic salmon (Salmo salar L.). Aquaculture 258:558–564

    Article  CAS  Google Scholar 

  • Olson JA (1989) Provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A. J Nutr 119:105–108

    CAS  PubMed  Google Scholar 

  • Orledge JM, Blount JD, Hoodless AN, Royle NJ (2012) Antioxidant supplementation during early development reduces parasite load but does not affect sexual ornament expression in adult ring-necked pheasants. Funct Ecol 26:688–700

    Article  Google Scholar 

  • Peluc SI, Reed WL, McGraw KJ, Gibbs P (2012) Carotenoid supplementation and GnRH challenges influence female endocrine physiology, immune function, and egg-yolk characteristics in Japanese quail (Coturnix japonica). J Comp Physiol B 182:687–702

    Article  CAS  PubMed  Google Scholar 

  • Pérez C, Lores M, Velando A (2008) Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav Ecol 19:967–973

    Article  Google Scholar 

  • Perez-Rodriguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez L, Martínez-Padilla J, Mougeot F (2013) Carotenoid-based ornaments as signals of health status in birds: evidences from two galliform species, the red-legged partridge (Alectoris rufa) and the red grouse (Lagopus lagopus scoticus). In: Yamaguchi M (ed) Carotenoids: food sources, production and health benefits. Nova Science Publishers, Hauppauge, pp 173–198

    Google Scholar 

  • Pike TW, Blount JD, Lindström J, Metcalfe NB (2007) Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol Lett 3:353–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez DB, Simpson KL, Chichester CO (1973) The biosynthesis of astaxanthin: XVII. Intermediates in the conversion of β-carotene. Int J Biochem 4:213–222

    Article  CAS  Google Scholar 

  • Romero-Haro AA, Alonso-Alvarez C (2015) The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione. Am Nat 185:390–405

    Article  PubMed  Google Scholar 

  • Rubenstein DR, Parlow AF, Hutch CR, Martin LB II (2008) Environmental and hormonal correlates of immune activity in a cooperatively breeding tropical bird. Gen Comp Endocr 159:10–15

    Article  CAS  PubMed  Google Scholar 

  • Saino N, Bertacche V, Bonisoli‐Alquati A, Romano M, Rubolini D (2008) Phenotypic correlates of yolk and plasma carotenoid concentration in yellow-legged gull chicks. Physiol Biochem Zool 81:211–225

    Article  PubMed  Google Scholar 

  • Saino N, Romano M, Caprioli M, Rubolini D, Ambrosini R (2011) Yolk carotenoids have sex-dependent effects on redox status and influence the resolution of growth trade-offs in yellow-legged gull chicks. Behav Ecol 22:411–421

    Article  Google Scholar 

  • Salaberria C, Muriel J, de Luna M, Gil D, Puerta M (2013) The PHA test as an indicator of phagocytic activity in a passerine bird. PLoS ONE 8, e84108

    Article  PubMed Central  PubMed  Google Scholar 

  • San-Jose LM, Granado-Lorencio F, Fitze PS (2012) Dietary lipids reduce the expression of carotenoid-based coloration in Lacerta vivipara. Funct Ecol 26:646–656

    Article  Google Scholar 

  • Scheidt K (1998) Absorption and metabolism of carotenoids in birds, fish and crustaceans. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: biosynthesis. Birkhauser Verlag, Basel, pp 285–355

    Google Scholar 

  • Selman C, McLaren J, Meyer C, Duncan J, Redman P, Collins A, Duthie G, Speakman J (2006) Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech Ageing Dev 127:897–904

    Article  CAS  PubMed  Google Scholar 

  • Simons MJP, Cohen AA, Verhulst S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds — a meta-analysis. PLoS ONE 7, e43088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slifka KA, Wells RS, Ardente AJ, Crissey S (2013) Comparative diet analysis of fish species commonly consumed by managed and freeranging bottlenose dolphins (Tursiops truncatus). Internet J Vet Med 10:1

    Google Scholar 

  • Svensson P, Wong B (2011) Carotenoid-based signals in behavioural ecology: a review. Behaviour 148:131–189

    Article  Google Scholar 

  • Thorogood R, Kilner RM, Karadas F, Ewen JG (2008) Spectral mouth colour of nestlings changes with carotenoid availability. Funct Ecol 22:1044–1051

    Article  Google Scholar 

  • Tieleman BI, Williams JB, Ricklefs RE, Klasing KC (2005) Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc R Soc Lond B 272:1715–1720

    Article  Google Scholar 

  • Tyssandier V, Cardinault N, Caris-Veyrat C, Amiot M-J, Grolier P, Bouteloup C, Azais-Braesco V, Borel P (2002) Vegetable-borne lutein, lycopene, and β-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans. Am J Clin Nutr 75:526–534

    CAS  PubMed  Google Scholar 

  • van den Berg H (1999) Carotenoid Interactions. Nutr Rev 57:1–10

    Article  PubMed  Google Scholar 

  • Vinkler M, Svobodová J, Gabrielová B, Bainová H, Bryjová A (2013) Cytokine expression in phytohaemagglutinin-induced skin inflammation in a galliform bird. J Avian Biol 45:43–50

    Article  Google Scholar 

  • von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Article  Google Scholar 

  • Yeum K-J, Russell RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    Article  CAS  PubMed  Google Scholar 

  • Yonekura L, Nagao A (2007) Intestinal absorption of dietary carotenoids. Mol Nutr Food Res 51:107–115

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  • Zahavi A, Zahavi A (1997) The handicap principle. Oxford University Press, Oxford, A missing piece of Darwin’s puzzle

    Google Scholar 

Download references

Acknowledgments

We thank Kemin Food for kindly providing carotenoids. We are very grateful to N. Vetter, and V. Frochot for their help in the field, and F. Helfenstein for helpful discussion. We thank C. Alonso-Alvarez and two anonymous referees for their valuable comments on the manuscript. This study was financed, in part, by the French Polar Institute Paul-Emile Victor (IPEV, program 1162) and the Cambridge Infectious Diseases Consortium (CIDC). This work originated in the lab EDB as part of the ‘Laboratoire d’Excellence’ (LABEX) entitled TULIP (ANR-10-LABX-41). Any use of trade names is for descriptive purposes only and does not imply endorsement by the US government.

Ethical standards

Experiments were approved by the US Fish and Wildlife Service and State of Alaska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Leclaire.

Additional information

Communicated by M. Hughes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclaire, S., Bourret, V., Blanchard, P. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav Ecol Sociobiol 69, 1097–1111 (2015). https://doi.org/10.1007/s00265-015-1922-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1922-0

Keywords

Navigation