Skip to main content

Effects of carotenoid supplementation and oxidative challenges on physiological parameters and carotenoid-based coloration in an urbanization context

Abstract

Worldwide urbanization continues to present new selection pressures on organisms. Carotenoid pigmentation of animals provides an ideal study system for identifying the source and significance of urban impacts because it is an environmentally derived trait and carotenoid molecules have widespread physiological, phenotypic, and fitness functions. Prior work indicates that in some bird species, urban individuals display less colorful carotenoid ornaments than rural birds. However, few studies have experimentally identified the causal factors that drive such a pattern of reduced “sexiness in the city”. We performed two common-garden experiments with house finches, in which we manipulated carotenoid access and exposure to oxidative stress to understand how urban and desert birds respond to these drivers of carotenoid utilization. Urban finches were less colorful than desert birds at capture, but we found no differences between urban and desert finches in how carotenoid provisioning or oxidative stress affected plumage coloration. The only notable site differences in our experiments were that (a) the oxidative challenge caused a larger mass loss in urban compared to desert birds (experiment 1), (b) urban birds circulated higher levels of carotenoids than desert birds after receiving the same diet for 4 months (experiment 2), suggesting that, compared to desert birds, urban finches can better assimilate carotenoids from food or do not deplete as many carotenoids for use in free-radical scavenging. Overall, our results fail to reveal key carotenoid-specific physiological differences in urban and desert finches, and instead implicate other ecophysiological factors that drive urban/desert differences in carotenoid ornamentation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Almroth BC, Sturve J, Berglund A, Förlin L (2005) Oxidative damage in eelpout (Zoarces viviparous), measured as protein carbonyls and TBARS, as biomarkers. Aquat Toxicol 73:171–180

    Article  CAS  PubMed  Google Scholar 

  • Almroth BC, Johansson A, Förlin L, Sturve J (2010) Early-age changes in oxidative stress in brown trout, Salmo trutta. Comp Biochem Physiol B 155:442–448

    Article  Google Scholar 

  • Alonso-Alvarez C, Galvan I (2011) Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PLoS ONE 6:e19403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alonso-Alvarez C, Bertrand S, Devevey G, Maria G, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659

    Article  PubMed  Google Scholar 

  • Alonso-Alvarez C, Pérez-Rodriguez L, García JT, Viñuela J, Mateo R (2010) Age and breeding effort as sources of individual variability in oxidative stress markers in a bird species. Physiol Biochem Zool 83:110–118

    Article  PubMed  Google Scholar 

  • Berny P (2007) Pesticides and the intoxication of wild animals. J Vet Pharmacol Ther 30:93–100

    Article  CAS  PubMed  Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti GR, Fernie KJ, Smits JE (2003) Carotenoid concentration and coloration of American Kestrels (Falco sparverius) disrupted by experimental exposure to PCBs. Funct Ecol 17:651–657

    Article  Google Scholar 

  • Butler MW, McGraw KJ (2010) Relationships between dietary carotenoids, body tissue carotenoids, parasite burden, and health state in wild mallard (Anas platyrhynchos) ducklings. Arch Biochem Biophys 504:154–160

    Article  CAS  PubMed  Google Scholar 

  • Callaway JK, Beart PM, Jarrott B (1998) A reliable procedure for comparison of antioxidants in rat brain homogenates. J Pharmacol Toxicol 39:155–162

    Article  CAS  Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–129

    Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Article  Google Scholar 

  • Costantini D, Coluzza C, Fanfani A, Dell’Omo G (2007) Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J Comp Physiol B 177:723–731

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam TPA, Boloor KK, Ramasarma T (2003) Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys 40:300–308

    CAS  PubMed  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants: a review. J Photochem Photobiol B 41:189–200

    Article  CAS  PubMed  Google Scholar 

  • Eeva T, Lehikoinen E, Rönkä M (1998) Air pollution fades the plumage of the great tit. Funct Ecol 12:607–612

    Article  Google Scholar 

  • Eeva T, Ryömä M, Riihimäki J (2005) Pollution-related changes in diets of two insectivorous passerines. Oecologia 145:629–639

    Article  CAS  PubMed  Google Scholar 

  • El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  PubMed  Google Scholar 

  • Galvani P, Cassani A, Fumagalli P, Santagostino A (2000) Effect of paraquat on glutathione activity in Japanese quail. Bull Environ Contam Toxicol 64:74–80

    Article  CAS  PubMed  Google Scholar 

  • Giraudeau M, Toomey M, McGraw KJ (2012) Can house finches (Carpodacus mexicanus) use non-visual cues to discriminate the carotenoid content of foods? J Ornithol 153:1017–1023

    Article  Google Scholar 

  • Giraudeau M, Sweazea K, Butler MW, McGraw KJ (2013) Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp Biochem Physiol A Mol Integr Physiol 166:406–413

    Article  CAS  PubMed  Google Scholar 

  • Giraudeau M, Mousel M, Earl S, McGraw K (2014) Parasites in the city: degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9:e86747

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    Article  PubMed  Google Scholar 

  • Hasegawa M, Ligon RA, Giraudeau M, Watanabe M, McGraw KJ (2014) Urban and colorful male house finches are less aggressive. Behav Ecol 25:641–649

    Article  Google Scholar 

  • Hill GE (1995) Ornamental traits as indicators of environmental health. Bioscience 45:25–31

    Article  Google Scholar 

  • Hill GE (2002) A red bird in a brown bag: the function and evolution of colorful plumage in the house finch. Oxford University Press, New York

    Book  Google Scholar 

  • Hill GE, Farmer KL, Beck ML (2004) The effect of mycoplasmosis on carotenoid plumage coloration in male house finches. J Exp Biol 207:2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Hõrak P, Vellau H, Ots I, Møller AP (2000) Growth conditions affect carotenoid-based plumage coloration of great tit nestlings. Naturwissenschaften 87:460–464

    Article  PubMed  Google Scholar 

  • Hõrak P, Ots I, Vellau H, Spottiswoode C, Møller AP (2001) Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126:166–173

    Article  Google Scholar 

  • Hunnisett A, Davies S, McLaren-Howard J, Gravett P, Finn M, Gueret-Wardle D (1995) Lipoperoxides as an index of free radical activity in bone marrow transplant recipients. Biol Trace Elem Res 47:125–132

    Article  CAS  PubMed  Google Scholar 

  • Inouye CY, Hill GE, Stradi RD, Montgomerie R (2001) Carotenoid pigments in male house finch plumage in relation to age, subspecies, and ornamental coloration. Auk 118:900–915

    Article  Google Scholar 

  • Isaksson C, Andersson S (2008) Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc R Soc Lond B 275:309–314

    Article  CAS  Google Scholar 

  • Isaksson C, Örnborg J, Stephensen E, Andersson S (2005) Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2:138–146

    Article  Google Scholar 

  • Isaksson C, McLaughlin P, Monaghan P, Andersson S (2007) Carotenoid pigmentation does not reflect total non-enzymatic antioxidant activity in plasma of adult and nestling great tits, Parus major. Funct Ecol 21:1123–1129

    Article  Google Scholar 

  • Isaksson C, Sturve J, Almroth BC, Andersson S (2009) The impact of urban environment on oxidative damage (TBARS) and antioxidant systems in lungs and liver of great tits, Parus major. Environ Res 109:46-50

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Katsumata Y, Ozawa T, Tawara S, Igarashi K, Cho Y, Shibata N, Hakuno F, Takahashi SI, Takenaka A (2010) Effect of paraquat-induced oxidative stress on insulin regulation of insulin-like growth factor-binding protein-1 gene expression. J Clin Biochem Nutr 46:157–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koutsos EA, Clifford AJ, Calvert CC, Klasing KC (2003) Maternal carotenoid status modifies the incorporation of dietary carotenoids into immune tissues of growing chickens (Gallus gallus domesticus). J Nutr 133:1132–1138

    CAS  PubMed  Google Scholar 

  • Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817

    Article  CAS  PubMed  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Marzluff JM (2001) Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology in an urbanizing world. Kluwer, Norwell, pp 19–47

    Chapter  Google Scholar 

  • McGraw KJ (2006) The mechanics of carotenoid coloration in birds. In: Hill GE, McGraw KJM (eds) Bird coloration. I. Mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Hill GE (2000) Plumage brightness and breeding-season dominance in the house finch: a negatively correlated handicap? Condor 102:456–461

    Article  Google Scholar 

  • McGraw KJ, Parker RS (2006) A novel lipoprotein-mediated mechanism controlling sexual attractiveness in a colorful songbird. Physiol Behav 87:103–108

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). Physiol Biochem Zool 74:843–852

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Dale J, Mackillop EA (2003) Social environment during molt and the expression of melanin-based plumage pigmentation in male house sparrows (Passer domesticus). Behav Ecol Sociobiol 53:116–122

    Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2006) Carotenoid accumulation strategies for becoming a colourful house finch: analyses of plasma and liver pigments in wild moulting birds. Funct Ecol 20:678–688

    Article  Google Scholar 

  • McGraw KJ, Crino OL, Nolan PM (2011) Carotenoids boost immunity during molt in a songbird with sexually selected carotenoid-based plumage coloration. Biol J Linn Soc 102:560–572

    Article  Google Scholar 

  • Meitern R, Sild E, Kilk K, Porsok R, Hõrak P (2013) On the methodological limitations of detecting oxidative stress: effects of paraquat on measures of oxidative stress in greenfinches. J Exp Biol 216:2713–2721

    Article  PubMed  Google Scholar 

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Møller AP, Erritzøe J, Karadas F (2010) Levels of antioxidants in rural and urban birds and their consequences. Oecologia 163:35–45

    Article  PubMed  Google Scholar 

  • Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463

    Article  CAS  PubMed  Google Scholar 

  • Oh KP, Badyaev AV (2006) Adaptive genetic complementarity in mate choice coexists with preference for elaborate sexual traits. Proc R Soc Lond B 273:1913–1919

    Article  Google Scholar 

  • Partecke J, Van’t Hof T, Gwinner E (2004) Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences? Proc R Soc Lond B 271:1995–2001

    Article  CAS  Google Scholar 

  • Partecke J, Schwabl I, Gwinner E (2006) Stress and the city: urbanization and its effects on the stress physiology in European Blackbirds. Ecology 87:1945–1952

    Article  PubMed  Google Scholar 

  • Pérez-Rodriguez L, Mougeot F, Alonso-Alvarez C, Blas J, Viñuela J, Bortolotti GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol 211:2155–2161

    Article  PubMed  Google Scholar 

  • Peters A, Denk AG, Delhey K, Kempenaers B (2004) Cartenoid-based bill colour as an indicator of immunocompetence and sperm performance in male mallards. J Evol Biol 17:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Salmon AB, Marx DB, Harshman LG (2001) A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution 55:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Schilderman PAEL, Hoogewerff JA, van Schooten FJ, Maas LM, Moonen EJC, van Os BJH, van Wijnen JH, Kleinjans JCS (1997) Possible relevance of pigeons as an indicator species for monitoring air pollution. Environ Health Perspect 105:322–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shocat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  Google Scholar 

  • Siems W, Wiswedel I, Salerno C, Crifό C, Augustin W, Schild L, Langhans C, Sommerburg O (2005) β-Carotene breakdown products may impair mitochondrial functions—potential side effects of high-dose β-carotene supplementation. J Nutr Biochem 16:385–397

    Article  CAS  PubMed  Google Scholar 

  • Slagsvold T, Lifjeld JT (1985) Variation in plumage colour of the great tit Parus major in relation to habitat, season and food. J Zool 206:321–328

    Article  Google Scholar 

  • Surai PF (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  • Toomey MB, McGraw KJ (2009) Seasonal, sexual, and quality related variation in retinal carotenoid accumulation in the house finch. Funct Ecol 23:321–329

    Article  Google Scholar 

  • Toomey MB, McGraw KJ (2012) Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation. BMC Evol Biol 12:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tummeleht L, Mägi M, Kilgas P, Mänd R, Hõrak P (2006) Antioxidant protection and plasma carotenoids of incubating great tits (Parus major L.) in relation to health state and breeding conditions. Comp Biochem Physiol C 144:166–172

    Google Scholar 

  • von Schantz TS, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Article  Google Scholar 

  • Wang Y, Salmon AB, Harshman LG (2001) A cost of reproduction: oxidative stress susceptibility is associated with increased egg production in Drosophila melanogaster. Exp Gerontol 36:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical Standards

The study was approved by the Arizona State University Institutional Animal Care and Use Committee, and it complies with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Giraudeau.

Additional information

Communicated by E. Fernandez-Juricic

Mathieu Giraudeau and Afton Chavez have participated equally in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 222 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraudeau, M., Chavez, A., Toomey, M.B. et al. Effects of carotenoid supplementation and oxidative challenges on physiological parameters and carotenoid-based coloration in an urbanization context. Behav Ecol Sociobiol 69, 957–970 (2015). https://doi.org/10.1007/s00265-015-1908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1908-y

Keywords

  • Urbanization
  • Carotenoids
  • House finch
  • Oxidative stress
  • Plumage coloration