Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds

Abstract

In nocturnal songbird migrants, total speed of migration is determined by the time birds stay at stopovers, where they replenish fuel reserves used during previous flights, and by their travel speed. In contrast to factors influencing stopover duration, little is known about individual variation in travel speed which is a combination of birds’ ground speed and the time spent flying. The latter is directly affected by nocturnal departure time. Ground speed can be easily tracked, e.g., by radar, but not much is known about when migrants set off within the night, let alone factors influencing its variation. Studying how factors cause variation in nocturnal departure time requires an experimental setup that allows transferring results from indoor experiments, where environmental conditions can be controlled for or manipulated, to the behavior of free-flying birds. Here, we show that the start of nocturnal migratory restlessness „Zugunruhe” of caged songbirds was significantly positively related to their radio-tracked nocturnal departure time the following night. We can now start identifying factors causing individual variation in the start of nocturnal migratory restlessness and transfer these results to departure times within the night. This will improve our understanding of why travel speed, and with that total speed of migration, varies individually and how it is affected by environmental changes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23

    Article  Google Scholar 

  2. Berthold P, Fiedler W, Querner U (2000) Die Zugunruhe bei Vögeln - eine Darstellung nach Videoaufnahmen bei Infrarotlichtbeleuchtung. J Ornithol 141:285–299

    Article  Google Scholar 

  3. Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken. I. Periodik des Körpergewichtes, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:186–189

    Google Scholar 

  4. Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212:77–79

    Article  CAS  PubMed  Google Scholar 

  5. Bruderer B (1997) The study of bird migration by radar. Part 2: major achievements. Naturwissenschaften 84:45–54

    Article  CAS  Google Scholar 

  6. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. radar measurements of speeds. Ibis 143:178–204

    Article  Google Scholar 

  7. Cochran WW (1980) Wildlife telemetry. In: Schemnitz S (ed) Wildlife management techniques manual, 4th edn. The Wildlife Society, Washington, pp 507–520

    Google Scholar 

  8. Crawley MJ (2005) Statistical computing. An introduction to data analysis using S-Plus. Wiley, West Sussex

    Google Scholar 

  9. Delingat J, Hobson K, Dierschke V, Schmaljohann H, Bairlein F (2011) Population differentiation of Northern wheatears by means of morphometric data and stable isotopes. J Ornithol 152:383–395

    Article  Google Scholar 

  10. Dorka V (1966) Das jahres- und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Ornithol Beob 63:165–223

    Google Scholar 

  11. Eikenaar C, Schläfke L (2013) Size and accumulation of fuel reserves at stopover predict nocturnal restlessness in a migratory bird. Biol Lett 9:20130712

    Article  PubMed Central  PubMed  Google Scholar 

  12. Eikenaar C, Klinner T, Szostek KL, Bairlein F (2014) Migratory restlessness in captive individuals predicts actual departure in the wild. Biol Lett 10:20140154

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    PubMed  Google Scholar 

  14. Jenni L, Schaub M (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 155–171

    Chapter  Google Scholar 

  15. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  16. Kemp MU, Shamoun-Baranes J, van Loon EE, McLaren JD, Dokter AM, Bouten W (2012a) Quantifying flow-assistance and implications for movement research. J Theor Biol 308:56–67

    Article  PubMed  Google Scholar 

  17. Kemp MU, van Loon E, Shamoun-Baranes J, Bouten W (2012b) RNCEP: global weather and climate data at your fingertips. Method Ecol Evol 3:65–70

    Article  Google Scholar 

  18. Kenward RE (2001) A manual for wildlife radio tagging. Academic, London, San Diego

    Google Scholar 

  19. Liechti F (2006) Birds: blowin' by the wind? J Ornithol 147:202–211

    Article  Google Scholar 

  20. Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of Northern Wheatear Oenanthe oenanthe. J Biol Rhythm 25:268–276

    Article  Google Scholar 

  21. Maggini I, Bairlein F (2012) Innate sex differences in the timing of spring migration in a songbird. PLoS ONE 7:e31271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Matteson DS, James NA (2014) A nonparametric approach for multiple change point analysis of multivariate data. J Am Stat Assoc 109:334–345

    Article  CAS  Google Scholar 

  23. Muheim R, Phillips JB, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845

    Article  PubMed  Google Scholar 

  25. Pakhomov A, Chernetsov N (2014) Early evening activity of migratory garden warbler Sylvia borin: compass calibration activity? J Ornithol 155:621–630

    Article  Google Scholar 

  26. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/

  27. Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Naef-Daenzer B, Grande C (2011) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol 152:439–452

    Article  Google Scholar 

  28. Schmaljohann H, Korner-Nievergelt F, Naef-Daenzer B, Nagel R, Maggini I, Bulte M, Bairlein F (2013) Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe). Front Zool 10

  29. Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619

    Article  Google Scholar 

  30. Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate shift in migratory direction and timing of nocturnal departure in a free flying songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  31. Smolinsky JA, Diehl RH, Radzio TA, Delaney DK, Moore FR (2013) Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. Behav Ecol Sociobiol 67:2041–2051

    Article  Google Scholar 

  32. Svensson L (1992) Identification guide to European passerines, 4th edn. BTO, Stockholm

    Google Scholar 

  33. Székely GJ, Rizzo ML (2005) Hierarchical clustering via joint between-within distances: extending Ward's minimum variance method. J Classif 22:151–183

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Konstantin Lebus for the help with the radio-tracking. Jochen Dierschke and Klaus Müller supported in various ways on Helgoland. Franz Bairlein and an anonymous referee provided useful comments. HS and the study are financed by the Deutsche Forschungsgemeinschaft (grant number SCHM 2647).

Ethical standards

Northern wheatears were caught, ringed, and radio-tagged under license of the Ministry for Agriculture, the Environment and Rural Areas, Schleswig-Holstein, Germany.

Author contributions

HS designed the research; HS, SK, AF, and RK performed the research; HS and SK analyzed the data; HS, SK, AF, RK, and CE wrote the paper.

Conflicts of interest

The authors have no competing interests to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heiko Schmaljohann.

Additional information

Communicated by W. Wiltschko

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 67 kb)

ESM 2

(PDF 61 kb)

ESM 3

(PDF 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmaljohann, H., Kämpfer, S., Fritzsch, A. et al. Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds. Behav Ecol Sociobiol 69, 909–914 (2015). https://doi.org/10.1007/s00265-015-1902-4

Download citation

Keywords

  • Migratory restlessness
  • Nocturnal departure time
  • Radio-tracking
  • Songbird
  • Speed of migration
  • Zugunruhe