Skip to main content

What is the value of a yellow patch? Assessing the signalling role of yellow colouration in the European serin

Abstract

Sexual selection promotes the evolution of signals, many of which can reliably indicate condition, health or good genes of individuals. In order to be evolutionarily stable, indicator signals must be costly to produce. Carotenoid colouration evolved in many species by sexual selection. Carotenoids besides acting as pigments have been implicated in immune defence and antioxidation which makes them likely candidates for honest signalling. A trade-off for carotenoid availability was proposed as the basis for signal honesty. Alternatively, it was suggested that carotenoid colouration is not advertising the presence of the pigment per se, but the quality of antioxidant resources which then affect carotenoid concentration. One possibility is that carotenoid-based colouration could signal colourless antioxidant mechanisms, which are partially regulated by vitamins. β-Carotene is one of the most common precursors of vitamin A and, although present in bird diet, is not available for feather colouration. If an indirect association exists between carotenoid signal and condition, then manipulation of β-carotene concentration could reveal that this link is indirect. We tested this by conditioning the availability of β-carotene in the diet of a cardueline finch with yellow carotenoid colouration during moult. β-Carotene-supplemented males had higher plasma carotenoid concentration and higher response to a cellular immunity challenge (phytohaemagglutinin (PHA)) than control males. β-Carotene-supplemented males also had more saturated plumage colouration and were preferred by females in a mate choice test. Our results support the possibility of an indirect role for yellow carotenoid colouration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguilera E, Amat J (2007) Carotenoids, immune response and the expression of sexual ornaments in male greenfinches (Carduelis chloris). Naturwissenschaften 94:895–902

    CAS  PubMed  Article  Google Scholar 

  2. Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659

    PubMed  Article  Google Scholar 

  3. Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  4. Baeta R, Faivre B, Motreuil S, Gaillard M, Moreau J (2008) Carotenoid trade-off between parasitic resistance and sexual display: an experimental study in the blackbird (Turdus merula). Proc R Soc Lond B 275:427–434

    CAS  Article  Google Scholar 

  5. Behnke JM, McGregor PK, Shepherd M, Wiles R, Barnard C, Gilbert FS, Hurst JL (1995) Identity, prevalence and intensity of infestation with wing feather mites on birds (Passeriformes) from the Setubal Peninsula of Portugal. Exp Appl Acarol 19:443–458

    Google Scholar 

  6. Behnke J, McGregor P, Cameron J, Hartley I, Shepherd M, Gilbert F, Barnard C, Hurst J, Gray S, Wiles R (1999) Semi-quantitative assessment of wing feather mite (Acarina) infestations on passerine birds from Portugal. Evaluation of the criteria for accurate quantification of mite burdens. J Zool 248:337–347

    Article  Google Scholar 

  7. Bendich A (1989) Symposium conclusions: biological actions of carotenoids. J Nutr 119:135–136

    CAS  PubMed  Google Scholar 

  8. Bendich A, Olson JA (1989) Biological actions of carotenoids. FASEB J 3:1927–1932

    CAS  PubMed  Google Scholar 

  9. Bertrand S, Alonso-Alvarez C, Devevey G, Faivre B, Prost J, Sorci G (2006a) Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia 147:576–584

    PubMed  Article  Google Scholar 

  10. Bertrand S, Faivre B, Sorci G (2006b) Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants? J Exp Biol 209:4414–4419

    CAS  PubMed  Article  Google Scholar 

  11. Biard C, Surai PF, Møller AP (2006) Carotenoid availability in diet and phenotype of blue and great tit nestlings. J Exp Biol 209:1004–1015

    CAS  PubMed  Article  Google Scholar 

  12. Biesalski HK, Chichili GR, Frank J, von Lintig J, Nohr D (2007) Conversion of β-carotene to retinal pigment. In: Gerald L (ed) Vitamins & hormones, vol 75. Academic Press, San Diego, USA, p 117–130

  13. Blas J, Perez-Rodriguez L, Bortolotti GR, Vinuela J, Marchant TA (2006) Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signaling. Proc Natl Acad Sci U S A 103:18633–18637

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Blount JD (2004) Carotenoids and life-history evolution in animals. Arch Biochem Biophys 430:10–15

    CAS  PubMed  Article  Google Scholar 

  15. Blount JD, Surai PF, Houston DC, Møller AP (2001) The relationship between dietary and yolk carotenoid composition in a wild bird: a supplemental feeding study of lesser black-backed gulls (Larus fuscus). Br Poult Sci 42:S84–S85

    Google Scholar 

  16. Blount JD, Metcalfe NB, Arnold KE, Surai PF, Devevey GL, Monaghan P (2003) Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch. Proc R Soc Lond B 270:1691–1696

    CAS  Article  Google Scholar 

  17. Bruzzone OA, Corley JC (2011) Which is the best experimental design in animal choice tests? Anim Behav 82:161–169

    Article  Google Scholar 

  18. Chew BP (1993) Role of carotenoids in the immune response. J Dairy Sci 76:2804–2811

    CAS  PubMed  Article  Google Scholar 

  19. Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    CAS  PubMed  Google Scholar 

  20. Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Article  Google Scholar 

  21. Cramp S, Perrins CM (eds) (1994) Handbook of the birds of Europe, the Middle East and North Africa—the birds of the Western Palearctic, vol VIII—crows to finches. Oxford University Press, Oxford

    Google Scholar 

  22. Cucco M, Guasco B, Malacarne G, Ottonelli R (2006) Effects of β-carotene supplementation on chick growth, immune status and behaviour in the grey partridge, Perdix perdix. Behav Process 73:325–332

    CAS  Article  Google Scholar 

  23. D’Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3:63–103

    PubMed Central  PubMed  Article  Google Scholar 

  24. Debier C, Larondelle Y (2005) Vitamins A and E: metabolism, roles and transfer to offspring. Br J Nutr 93:153–174

    CAS  PubMed  Article  Google Scholar 

  25. del Val E, Senar J, Garrido-Fernández J, Jarén M, Borràs A, Cabrera J, Negro J (2009) The liver but not the skin is the site for conversion of a red carotenoid in a passerine bird. Naturwissenschaften 96:797–801

    CAS  PubMed  Article  Google Scholar 

  26. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    CAS  PubMed  Article  Google Scholar 

  27. Endler J (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fish 9:173–190

    Article  Google Scholar 

  28. Evans JP, Kelley JL, Bisazza A, Finazzo E, Pilastro A (2004) Sire attractiveness influences offspring performance in guppies. Proc R Soc Lond B 271:2035–2042

    Article  Google Scholar 

  29. Evans SR, Hinks AE, Wilkin TA, Sheldon BC (2010) Age, sex and beauty: methodological dependence of age- and sex-dichromatism in the great tit Parus major. Biol J Linn Soc 101:777–796

    Article  Google Scholar 

  30. Faivre B, Préault M, Salvadori F, Théry M, Gaillard M, Cézilly F (2003) Bill colour and immunocompetence in the European blackbird. Anim Behav 65:1125–1131

    Article  Google Scholar 

  31. Fenoglio S, Cucco M, Malacarne G (2002) The effect of a carotenoid-rich diet on immunocompetence and behavioural performances in Moorhen chicks. Ethol Ecol Evol 14:149–156

    Article  Google Scholar 

  32. Figuerola J, Senar JC (2007) Serins with intermediate brightness have a higher survival in the wild. Oikos 116:636–641

    Article  Google Scholar 

  33. Figuerola J, Domenech J, Senar JC (2003) Plumage colour is related to ectosymbiont load during moult in the serin, Serinus serinus: an experimental study. Anim Behav 65:551–557

    Article  Google Scholar 

  34. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Mitochondrial control of cellular life, stress, and death. Circ Res 111:1198–1207

    CAS  PubMed  Article  Google Scholar 

  35. Goodwin TW (1984) The biochemistry of carotenoids, vol II, animals. Chapman & Hall, New York

    Book  Google Scholar 

  36. Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    CAS  PubMed  Article  Google Scholar 

  37. Hart N, Partridge J, Cuthill I, Bennett A (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol A 186:375–387

    CAS  PubMed  Article  Google Scholar 

  38. Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    PubMed  Article  Google Scholar 

  39. Hasselquist D, Nilsson J-Å (2012) Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav 83:1303–1312

    Article  Google Scholar 

  40. Håstad O, Victorsson J, Ödeen A (2005) Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc Natl Acad Sci U S A 102:6391–6394

    PubMed Central  PubMed  Article  Google Scholar 

  41. Hill GE (1990) Female house finches prefer colourful males: sexual selection for a condition-dependent trait. Anim Behav 40:563–572

    Article  Google Scholar 

  42. Hill GE (1994) Geographic variation in male ornamentation and female mate preference in the House finch—a comparative test of models of sexual selection. Behav Ecol 5:64–73

    Article  Google Scholar 

  43. Hill GE (1999) Is there an immunological cost to carotenoid-based ornamental coloration? Am Nat 154:589–595

    PubMed  Article  Google Scholar 

  44. Hill GE (2006) Female mate choice for ornamental coloration. In: Hill GE, McGraw K (eds) Bird coloration: function and evolution, vol II. Harvard University Press, London, pp 137–200

    Google Scholar 

  45. Hill GE, Johnson JD (2012) The vitamin A–redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150

    PubMed  Article  Google Scholar 

  46. Hõrak P, Saks L (2003) Animal allure and health linked by plant pigments. BioEssays 25:746–747

    PubMed  Article  Google Scholar 

  47. Huggins K, Navara K, Mendonça M, Hill G (2010) Detrimental effects of carotenoid pigments: the dark side of bright coloration. Naturwissenschaften 97:637–644

    CAS  PubMed  Article  Google Scholar 

  48. Jakob E, Marshall S, Uetz G (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  49. Johnson K, Rosetta D, Burley DN (1993) Preferences of female American goldfinches (Carduelis tristis) for natural and artificial male traits. Behav Ecol 4:138–143

    Article  Google Scholar 

  50. Kopena R, López P, Martín J (2014) Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav Ecol Sociobiol 68:571–581

    Article  Google Scholar 

  51. Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635

    CAS  PubMed  Article  Google Scholar 

  52. Leitão AV, Monteiro AH, Mota PG (2014) Ultraviolet reflectance influences female preference for colourful males in the European serin. Behav Ecol Sociobiol 68:63–72

    Article  Google Scholar 

  53. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311

    Article  Google Scholar 

  54. Maia R, Eliason CM, Bitton PP, Doucet SM, Shawkey MD (2013) pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol 4:906–913

    Google Scholar 

  55. Martin LB, Han P, Lewittes J, Kuhlman JR, Klasing KC, Wikelski M (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299

    Article  Google Scholar 

  56. Martínez A, Rodríguez-Gironés MA, As B, Costas M (2008) Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A 112:9037–9042

    PubMed  Article  Google Scholar 

  57. McGraw K (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw K (eds) Bird coloration: mechanisms and measurements, vol I. Harvard University Press, London, pp 177–242

    Google Scholar 

  58. McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    PubMed  Article  Google Scholar 

  59. McGraw KJ, Ardia DR (2005) Sex differences in carotenoid status and immune performance in zebra finches. Evol Ecol Res 7:251–262

    Google Scholar 

  60. McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and Northern Cardinals (Cardinalis cardinalis). Physiol Biochem Zool 74:843–852

    CAS  PubMed  Article  Google Scholar 

  61. McGraw KJ, Hill GE, Parker RS (2005) The physiological costs of being colourful: nutritional control of carotenoid utilization in the American goldfinch, Carduelis tristis. Anim Behav 69:653–660

    Article  Google Scholar 

  62. McWhinney SLL, Bailey CA (1989) Immunoenhancing effect of β-carotene in chicks. Poult Sci 68(suppl 1):94 (Abstr.)

    Google Scholar 

  63. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  64. Mougeot F (2008) Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus. Naturwissenschaften 95:125–132

    CAS  PubMed  Article  Google Scholar 

  65. Navara KJ, Hill GE (2003) Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav Ecol 14:909–916

    Article  Google Scholar 

  66. Navarro C, Pérez-Contreras T, Avilés J, McGraw K, Soler J (2010) Beak colour reflects circulating carotenoid and vitamin A levels in spotless starlings (Sturnus unicolor). Behav Ecol Sociobiol 64:1057–1067

    Article  Google Scholar 

  67. Ninni P, Fd L, Saino N, Haussy C, Møller AP (2004) Antioxidants and condition-dependence of arrival date in a migratory passerine. Oikos 105:55–64

    Article  Google Scholar 

  68. Nolan PM, Hill GE (2004) Female choice for song characteristics in the house finch. Anim Behav 67:403–410

    Article  Google Scholar 

  69. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    CAS  PubMed  Article  Google Scholar 

  70. Osorio D, Miklósi A, Gonda Z (1999) Visual ecology and perception of coloration patterns by domestic chicks. Evol Ecol 13:673–689

    Article  Google Scholar 

  71. Ots I, Murumägi A, Hõrak P (1998) Haematological health state indices of reproducing great tits: methodology and sources of natural variation. Funct Ecol 12:700–707

    Article  Google Scholar 

  72. Ots I, Kerimov AB, Ivankina EV, Ilyina TA, Hõrak P (2001) Immune challenge affects basal metabolic activity in wintering great tits. Proc R Soc Lond B 268:1175–1181

    CAS  Article  Google Scholar 

  73. Pagani-Nuñez E, Senar JC (2012) Changes in carotenoid-based plumage colour in relation to age in European Serins Serinus serinus. Ibis 154:155–160

    Article  Google Scholar 

  74. Pérez-Rodriguez L, Mougeot F, Alonso-Alvarez C, Blas J, Vinuela J, Bortolotti GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol 211:2155–2161

    PubMed  Article  Google Scholar 

  75. Pérez-Rodriguez L, Mougeot F, Alonso-Alvarez C (2010) Carotenoid-based coloration predicts resistance to oxidative damage during immune challenge. J Exp Biol 213:1685–1690

    PubMed  Article  Google Scholar 

  76. Peters A, Delhey K, Denk AG, Kempenaers B (2004) Trade-offs between immune investment and sexual signaling in male mallards. Am Nat 164:51–59

    PubMed  Article  Google Scholar 

  77. Peters A, Magdeburg S, Delhey K (2011) The carotenoid conundrum: improved nutrition boosts plasma carotenoid levels but not immune benefits of carotenoid supplementation. Oecologia 166:35–43

    PubMed  Article  Google Scholar 

  78. Pike TW, Blount JD, Lindström J, Metcalfe NB (2007) Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol Lett 3:353–356

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  79. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org

  80. Saino N, Ferrari R, Romano M, Martinelli R, Møller AP (2003) Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proc R Soc Lond B 270:2485–2489

    Article  Google Scholar 

  81. Saks L, Ots I, Hõrak P (2003) Carotenoid-based plumage coloration of male greenfinches reflects health and immunocompetence. Oecologia 134:301–307

    PubMed  Article  Google Scholar 

  82. Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  83. Searcy WA, Nowicki S (2005) The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton

    Google Scholar 

  84. Simons MJP, Verhulst S (2011) Zebra finch females prefer males with redder bills independent of song rate—a meta-analysis. Behav Ecol 22:755–762

    Article  Google Scholar 

  85. Simons MJP, Cohen AA, Verhulst S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—a meta-analysis. PLoS One 7:e43088

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  86. Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  87. Stillwell W, Nahmias S (1983) Effect of retinol and retinoic acid on P/O ratios of coupled mitochondria. Biochem Int 6:385–392

    CAS  PubMed  Google Scholar 

  88. Stradi R, Celentano G, Nava D (1995a) Separation and identification of carotenoids in bird’s plumage by high-performance liquid chromatography-diode-array detection. J Chromatogr B 670:337–348

    CAS  Article  Google Scholar 

  89. Stradi R, Celentano G, Rossi E, Rovati G, Pastore M (1995b) Carotenoids in bird plumage-I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp Biochem Physiol B 110:131–143

    Article  Google Scholar 

  90. Sundberg J (1995) Female yellowhammers (Emberiza citrinella) prefer yellower males: a laboratory experiment. Behav Ecol Sociobiol 37:275–282

    Article  Google Scholar 

  91. Surai AP (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  92. Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 3:e3295

    PubMed Central  PubMed  Article  Google Scholar 

  93. Toomey M, McGraw K (2012) Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation. BMC Evol Biol 12:3

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  94. von Lintig J (2010) Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 30:35–56

    Article  Google Scholar 

  95. Vorobyev M, Osorio D, Bennett A, Marshall N, Cuthill I (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    CAS  PubMed  Article  Google Scholar 

  96. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  97. Zahavi A (1975) Mate selection-a selection for a handicap. J Theor Biol 53:205–214

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Marta Costa for her field assistance, to Licínio Manco for lab help and to Antónia Conceição, from ESAC, for the supply of sheep blood. We also thank Jim Johnson and two anonymous reviewers for useful comments. This work was supported by a research grant (PTDC/BIA-BEC/105325/2008) to PGM and a PhD fellowship (SFRH/BD/44837/2008) to ST, both by Fundação para a Ciência e a Tecnologia.

Ethical standards

All experiments were performed in accordance to Portuguese legislation for research on animal behaviour and were conducted under license permits: 258/2009/CAPT to PGM and 259/2009/CAPT to ST, by Instituto da Conservação da Natureza e da Biodiversidade (ICNB).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Trigo.

Additional information

Communicated by K. McGraw

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trigo, S., Mota, P.G. What is the value of a yellow patch? Assessing the signalling role of yellow colouration in the European serin. Behav Ecol Sociobiol 69, 481–490 (2015). https://doi.org/10.1007/s00265-014-1860-2

Download citation

Keywords

  • Carotenoid-based ornamentation
  • Immune response
  • Colouration
  • Sexual signals
  • Sexual selection