Skip to main content

Length polymorphism at the avpr1a locus is correlated with male reproductive behavior in a natural population of prairie voles (Microtus ochrogaster)

Abstract

Laboratory studies have shown that vasopressin can influence sociosexual behavior through its action on the vasopressin 1a receptor (V1aR). There is substantial evidence that the length of a microsatellite in the gene (avpr1a) encoding for the V1aR can affect social attachment to females and paternal behavior in male prairie voles under laboratory conditions. However, previous field studies of prairie voles have failed to detect a strong effect of the length of a male’s avpr1a allele on their sociosexual behavior, but these studies are typically much shorter than the average prairie vole breeding lifespan. We examined the relationship between male avpr1a microsatellite allele length and sociosexual behavior in a natural population of prairie voles for 15 weeks, closer to the lifespan of prairie voles in nature. Contrary to predictions, we found that males with the longest avpr1a microsatellite alleles were significantly more likely to sire offspring with more than one female and to sire offspring that survived until trappable age than males with the shortest avpr1a microsatellite allele lengths. This relationship was the strongest for males with the longest tenure on the study site. As in previous field studies, we did not find evidence of a relationship between a male’s avpr1a genotype and any index of social behavior including male residency status or the number of females with which males associate. This is the first study to support the hypothesis that a male’s avpr1a genotype is a factor underlying variation in the genetic mating system of prairie voles under natural conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2006) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14

    Article  Google Scholar 

  2. Bales KL, van Westerhuyzen JA, Lewis-Reese AD, Grotte ND, Lanter JA, Carter CS (2007) Oxytocin has dose-dependent developmental effects on pair-bonding and alloparental care in female prairie voles. Horm Behav 52:271–279

    Article  Google Scholar 

  3. Barrett CE, Keebaugh AC, Ahern TH, Bass CE, Terwilliger EF, Young LJ (2013) Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles. Horm Behav 63:518–526

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Berteaux J, Masseboeuf F, Bonzom J, Bergeron J, Thomas DW, Lapierre H (1996) Effect of carrying a radiocolllar on expenditure of energy by meadow voles. J Mammal 77:359–363

    Article  Google Scholar 

  5. Brockmann HJ (2008) Alternative reproductive tactics in insects. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 177–223

    Chapter  Google Scholar 

  6. Cairns SJ, Schwager SJ (1987) A comparison of association indexes. Anim Behav 35:1454–1469

    Article  Google Scholar 

  7. Calisi RM, Bentley GE (2009) Lab and field experiments: are they the same animal? Horm Behav 56:1–10

    PubMed  Article  Google Scholar 

  8. Carter CS, Getz LL (1993) Monogamy and the prairie vole. Sci Am 268:100–110

    CAS  PubMed  Article  Google Scholar 

  9. Carter CS, Getz LL, Cohen-Parsons M (1986) Relationships between social organization and behavioral endocrinology in a monogamous mammal. Adv Stud Behav 16:109–145

    Article  Google Scholar 

  10. Castelli FR, Kelley RA, Keane B, Solomon NG (2011) Female prairie voles exhibit social and sexual preferences for males with longer avpr1a microsatellite alleles. Anim Behav 82:1117–1126

    Article  Google Scholar 

  11. Chesh AS, Mabry KE, Keane B, Noe DA, Solomon NG (2012) Are body mass and parasite load related to social partnerships and mating in Microtus ochrogaster? J Mammal 93:229–238

    Article  Google Scholar 

  12. Cochran GR, Solomon NG (2000) Effects of food supplementation on the social organization of prairie voles (Microtus ochrogaster). J Mammal 81:746–757

    Article  Google Scholar 

  13. Cushing BS, Kramer KM (2005) Microtines: a model system for studying the evolution and regulation of social monogamy. Acta Theriol Sin 25:182–199

    Google Scholar 

  14. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    CAS  PubMed  Article  Google Scholar 

  15. Desy EA, Batzli GO (1989) Effects of food availability and predation on prairie vole demography: a field experiment. Ecology 70:411–421

    Article  Google Scholar 

  16. Dewsbury DA (1995) Role of male proximity in pregnancy maintenance in prairie voles, Microtus ochrogaster. Physiol Behav 57:827–829

    CAS  PubMed  Article  Google Scholar 

  17. Diffendorfer JE, Gaines MS, Holt RD (1995) Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus and Peromyscus). Ecology 76:827–839

    Article  Google Scholar 

  18. Donaldson ZR, Spiegel L, Young LJ (2010) Central vasopressin V1a receptor activation is independently necessary for both partner preference formation an expression in socially monogamous male prairie voles. Behav Neurosci 124:159–163

    PubMed Central  PubMed  Article  Google Scholar 

  19. Donaldson ZR, Young LJ (2013) The relative contribution of 5’ flanking sequence and microsatellite variation on brain vasopressin 1a receptor (Avpr1a) gene expression and behavior. PLoS Genet 9:e1003729

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Fitch HS (1957) Aspects of reproduction and development in the prairie vole (Microtus ochrogaster). Univ Kansas Pub Museum Nat Hist 10:129–161

    Google Scholar 

  21. Fink S, Excoffier L, Heckel G (2006) Mammalian monogamy is not controlled by a single gene. Proc Natl Acad Sci U S A 103:10956–10960

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Gaines MS, Vivas AM, Baker CL (1979) An experimental analysis of dispersal in fluctuating vole populations: demographic parameters. Ecology 60:814–828

    Article  Google Scholar 

  23. Ganev IV, Solomon NG, Lucia KE, Keane B (2009) Multiple captures of adult prairie voles correlated with residency status and genetic parentage. J Mammal 90:696–703

    Article  Google Scholar 

  24. Getz LL, McGuire B, Hofmann J, Pizzuto T, Frase B (1994) Natal dispersal and philopatry in prairie voles (Microtus ochrogaster): settlement, survival, and potential reproductive success. Ethol Ecol Evol 6:267–284

    Article  Google Scholar 

  25. Getz LL, McGuire B, Pizzuto T, Hofmann JE, Frase B (1993) Social organization of the prairie vole (Microtus ochrogaster). J Mammal 74:44–58

    Article  Google Scholar 

  26. Godwin J, Thompson R (2012) Nonapeptides and social behavior in fishes. Horm Behav 61:230–238

    CAS  PubMed  Article  Google Scholar 

  27. Goodson JL, Thompson RR (2010) Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol 20:784–794

    CAS  PubMed  Article  Google Scholar 

  28. Gross MR (1984) Sunfish, salmon and the evolution of alternative reproductive strategies and tactics in fishes. In: Wootton RJ, Potts GW (eds) Fish reproduction: strategies and tactics. Academic Press, London, pp 55–75

    Google Scholar 

  29. Gross MR (1996) Alternative reproductive strategies and tactics: within sexes. Trends Ecol Evol 11:92–97

    CAS  PubMed  Article  Google Scholar 

  30. Gubernick DJ, Teferi T (2000) Adaptive significance of male parental care in a monogamous mammal. Proc R Soc Lond B 267:147–150

    CAS  Article  Google Scholar 

  31. Hammock EAD, Lim MM, Nair HP, Young LJ (2005) Association of vasopressin 1a receptor levels with a regulatory microsatellite and behavior. Genes Brain Behav 4:289–301

    CAS  PubMed  Article  Google Scholar 

  32. Hammock EAD, Young LJ (2002) Variation in the vasopressin V1a receptor promotor and expression: implications for inter- and intraspecific variation in social behavior. Eur J Neurosci 16:399–402

    PubMed  Article  Google Scholar 

  33. Hammock EAD, Young LJ (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–1634

    CAS  PubMed  Article  Google Scholar 

  34. Harper SJ, Batzli GO (1996) Monitoring use of runways by voles with passive integrated transponders. J Mammal 77:364–369

    Article  Google Scholar 

  35. Hayne DW (1949) Calculation of size of home range. J Mammal 30:1–18

    Article  Google Scholar 

  36. Heinrichs M, Domes G (2008) Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. Prog Brain Res 70:337–350

    Article  Google Scholar 

  37. Hilbe JM (2009) Logistic regression models. Chapman and Hall/CRC, London

    Google Scholar 

  38. Insel TR (1997) A neurobiological basis of social attachment. Am J Psychiatr 154:726–735

    CAS  PubMed  Google Scholar 

  39. Insel TR, Young LJ (2000) Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 10:784–789

    CAS  PubMed  Article  Google Scholar 

  40. Johnson WC (2001) A new individual marking technique: positional hair clipping. Southwest Nat 46:126–129

    Article  Google Scholar 

  41. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Article  Google Scholar 

  42. Keane B, Bryant L, Goyal U, Williams S, Kortering SL, Lucia KE, Richmond AR, Solomon NG (2007) No effect of body condition at weaning on survival and reproduction in prairie voles. Can J Zool 85:718–727

    Article  Google Scholar 

  43. Keller BL (1985) Reproductive patterns. In: Tamarin RH (ed) Biology of new world Microtus. Special Publ No. 8 Am Soc Mammal, pp 725–778

  44. Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, Young LJ (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429:754–757

    CAS  PubMed  Article  Google Scholar 

  45. Lonstein JS, De Vries GJ (1999) Comparison of the parental behavior of pair-bonded female and male prairie voles (Microtus ochrogaster). Physiol Behav 66:33–40

    CAS  PubMed  Article  Google Scholar 

  46. Lucia KE, Keane B, Hayes LD, Lin YK, Schaefer RL, Solomon NG (2008) Philopatry in prairie voles: an evaluation of the habitat saturation hypothesis. Behav Ecol 19:774–783

    Article  Google Scholar 

  47. Mabry KE, Streatfeild CA, Keane B, Solomon NG (2011) avpr1a length polymorphism is not associated with either social or genetic monogamy in free-living prairie voles. Anim Behav 81:11–18

    PubMed Central  PubMed  Article  Google Scholar 

  48. Mahady SJ, Wolff JO (2002) A field test of the Bruce effect in the monogamous prairie vole (Microtus ochrogaster). Behav Ecol Sociobiol 52:31–37

    Article  Google Scholar 

  49. McGraw LA, Young LJ (2010) The prairie vole an emerging model for understanding the social brainy. Trends Neurosci 33:103–109

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. McGuire B, Russel KD, Mahoney T, Novak M (1992) The effects of mate removal on pregnancy success in prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus). Biol Reprod 47:37–42

    CAS  PubMed  Article  Google Scholar 

  51. McGuire B, Getz LL (2010) Alternative male reproductive tactics in a natural population of prairie voles, Microtus ochrogaster. Acta Theriol 55:261–270

    Article  Google Scholar 

  52. Mock DW, Fujioka M (1990) Monogamy and long-term pair bonding in vertebrates. Trends Ecol Evol 5:39–43

    CAS  PubMed  Article  Google Scholar 

  53. Nadeau JH (1985) Ontogeny. In: Tamarin RH (ed) Biology of new world Microtus. Special Publ No. 8 Am Soc Mammal, pp 254–285

  54. Oldfield RG, Hofmann HA (2011) Neuropeptide regulation of monogamous behavior in a cichlid fish. Physiol Behav 102:296–303

    CAS  PubMed  Article  Google Scholar 

  55. Oliveira RF, Canario AVM, Ros AFH (2008) Hormones and alternative reproductive tactics in vertebrates. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 132–173

    Chapter  Google Scholar 

  56. Ophir AG, Campbell P, Hanna K, Phelps SM (2008a) Field tests of cis-regulatory variation at the prairie vole avpr1a locus: associations with V1aR abundance but not sexual or social fidelity. Horm Behav 54:694–702

    CAS  PubMed  Article  Google Scholar 

  57. Ophir AG, Phelps SM, Sorin AB, Wolff JO (2008b) Social but not genetic monogamy is associated with greater breeding success in prairie voles. Anim Behav 75:1143–1154

    Article  Google Scholar 

  58. Phelps SM, Campbell P, Zheng DJ, Ophir AG (2010) Beating the boojum: comparative approaches to the neurobiology of social behavior. Neuropharmacology 58:17–28

    CAS  PubMed  Article  Google Scholar 

  59. Penteriani V, Ferrer M, Delgado MM (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241

    Article  Google Scholar 

  60. Pitkow LJ, Sharer CA, Ren XL, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 21:7392–7396

    CAS  PubMed  Google Scholar 

  61. Pouliquen O, Leishman M, Redhead TD (1990) Effects of radio collars on wild mice, Mus domesticus. Can J Zool 68:1607–1609

    Article  Google Scholar 

  62. Richmond M, Conway CH (1969) Management, breeding, and reproductive performance of the vole, Microtus ochrogaster, in a laboratory colony. Lab Anim Care 19:80–87

    CAS  PubMed  Google Scholar 

  63. Roberts RL, Williams JR, Wang AK, Carter CS (1998) Cooperative breeding and monogamy in prairie voles: influence of the sire and geographical variation. Anim Behav 55:1131–1140

    PubMed  Article  Google Scholar 

  64. Schradin C, Lindholm AK (2011) Relative fitness of alternative male reproductive tactics in a mammal varies between years. J Anim Ecol 80:908–917

    PubMed  Article  Google Scholar 

  65. Schradin C, Lindholm AK, Johannesen J, Schoepf I, Yuen CH, Konig B, Pillay N (2012) Social flexibility and social evolution in mammals: a case study of the African striped mouse (Rhabdomys pumilio). Mol Ecol 21:541–553

    PubMed  Article  Google Scholar 

  66. Sikes RS, Gannon WL, Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  67. Slade NA, Swihart RK (1983) Home range indices for the hispid cotton rat (Sigmodon hispidus) in Northeastern Kansas. J Mammal 64:580–590

    Article  Google Scholar 

  68. Slade NA, Russell LA (1998) Distances as indices to movements and home-range size from trapping records of small mammals. J Mammal 79:346–351

    Article  Google Scholar 

  69. Solomon NG (1993) Comparison of parental behavior in male and female prairie voles (Microtus ochrogaster). Can J Zool 71:434–437

    Article  Google Scholar 

  70. Solomon NG, Jacquot JJ (2002) Characteristics of resident and wandering prairie voles, Microtus ochrogaster. Can J Zool 80:951–955

    Article  Google Scholar 

  71. Solomon NG, Keane B, Knoch LR, Hogan PJ (2004) Multiple paternity in socially monogamous prairie voles (Microtus ochrogaster). Can J Zool 82:1667–1671

    Article  Google Scholar 

  72. Solomon NG, Richmond AR, Harding PA, Fries A, Jacquemin S, Schaefer RL, Lucia KE, Keane B (2009) Polymorphism at the avpr1a locus in male prairie voles correlated with genetic but not social monogamy in field populations. Mol Ecol 18:4680–4695

    CAS  PubMed  Article  Google Scholar 

  73. Streatfeild CA, Mabry KE, Keane B, Crist TO, Solomon NG (2011) Intraspecific variability in the social and genetic mating systems of prairie voles Microtus ochrogaster. Anim Behav 82:1387–1398

    Article  Google Scholar 

  74. Taborsky M (2008) Alternative reproductive tactics in fish. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 251–299

    Chapter  Google Scholar 

  75. Wang Z, Novak MA (1992) The influence of the social environment on parental behavior and pup development of meadow voles (Microtus pennsylvanicus) and prairie voles (M. ochrogaster). J Comp Psychol 106:163–171

    Article  Google Scholar 

  76. Whitehead H (1999) Testing association patterns in social animals. Anim Behav 57:F26–F29

    PubMed  Article  Google Scholar 

  77. Whitehead H (2009) SOCPROG programs: analyzing animal social structures. Behav Ecol Sociobiol 63:765–778

    Article  Google Scholar 

  78. Winters J, Waser P (2003) Gene dispersal and outbreeding in a philopatric mammal. Mol Ecol 12:2251–2259

    CAS  PubMed  Article  Google Scholar 

  79. Witt DM (1995) Regulatory mechanisms of oxytocin-mediated sociosexual behavior. Ann NY Acad Sci 807:287–301

    Article  Google Scholar 

  80. Wolff JO (2008) Alternative reproductive tactics in nonprimate male mammals. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 356–372

    Chapter  Google Scholar 

  81. Wood MD, Slade NA (1990) Comparison of ear-tagging and toe-clipping in prairie voles, Microtus ochrogaster. J Mammal 71:252–255

    Article  Google Scholar 

  82. Yee TW (2010) The VGAM package for categorical data analysis. J Stat Softw 32:1–34

    Google Scholar 

  83. Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from monogamous vole. Nature 400:766–768

    CAS  PubMed  Article  Google Scholar 

  84. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7:1048–1054

    CAS  PubMed  Article  Google Scholar 

  85. Young LJ, Young AZ, Hammock EAD (2005) Anatomy and neurobiology of the pair bond. J Comp Neurol 493:51–57

    CAS  PubMed  Article  Google Scholar 

  86. Young AJ, Spong G, Clutton-Brock T (2007) Subordinate male meerkats prospect for extra-group paternity: alternative reproductive tactics in a cooperative mammal. Proc R Soc Lond B 274:1603–1609

    Article  Google Scholar 

Download references

Acknowledgements

We thank Keith Clay for logistical assistance with our use of the field site at Indiana University’s Bales Road Preserve. Andor Kiss at the Miami University Center for Bioinformatics and Functional Genomics provided logistical support with the avpr1a and microsatellite analyses. Stacey Hannebaum, Regina Willen, and numerous undergraduate research assistants helped with collection of field and genetic data. Funding for this study was provided by the National Science Foundation (IOS-0614015 to BK and NGS), American Society of Mammalogists (SP), and Miami University’s Zoology Department.

Ethical standards

All trapping, handling, and marking procedures were approved by the Miami University Institutional Animal Care and Use Committee and were in accordance with the guidelines of the American Society of Mammalogists for the use of wild mammals in research (Sikes et al. 2011).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian Keane.

Additional information

Communicated by A. I. Schulte-Hostedde

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keane, B., Parsons, S., Smucker, B.J. et al. Length polymorphism at the avpr1a locus is correlated with male reproductive behavior in a natural population of prairie voles (Microtus ochrogaster). Behav Ecol Sociobiol 68, 1951–1964 (2014). https://doi.org/10.1007/s00265-014-1801-0

Download citation

Keywords

  • Avpr1a
  • Prairie vole
  • Reproductive success
  • Sociosexual behavior
  • Vasopressin