Skip to main content
Log in

Analysis of sex sequences by means of generalized linear mixed models

  • Methods
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Adaptive strategies of sex allocation functioning to increase fitness, including strategic allocation of sex in relation to birth order and sex composition of the progeny, have frequently been explored, but the development of a statistical framework for these analyses has lagged behind. In this paper, we contribute to filling this gap by devising a method for analyzing sex sequences based on a proper parameterization of generalized linear mixed models (GLMMs). The method is highly flexible and can be easily extended to investigate sequences of traits or events or other longitudinal data. As a worked example, we focus on the analysis of sex sequences of offspring produced by females in a single reproductive event and develop a method that allows analyzing simultaneously sequences of different length (e.g., clutches of different size) and sequences with missing data, as may frequently happen in “real-world” data sets. Different patterns of allocation among traits or events along the sequence were investigated, and a real data base of sex sequences of eclectus parrots (Eclectus roratus) fledglings produced by different females was analyzed. A tutorial for running the analyses with the R or the SAS software is provided in the Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alonso-Alvarez C (2006) Manipulation of primary sex-ratio: an updated review. Avian Poult Biol Rev 171:1–20

    Article  Google Scholar 

  • Barnard C (2004) Animal behaviour. Pearson Education, Harlow

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaer KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Carranza J (2004) Sex allocation within broods: the intrabrood sharing-out hypothesis. Behav Ecol 15:223–232

    Article  Google Scholar 

  • Cassey P, Ewen JG, Møller AP (2006) Revised evidence for facultative sex ratio adjustment in birds: a correction. Proc R Soc Lond B 273:3129–3130

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University, Princeton

    Google Scholar 

  • Cheng J, Edwards LJ, Moldonaldo-Molina MM, Komro KA, Muller KE (2010) Real longitudinal data analysis for real people: building a good enough mixed model. Stat Med 29:504–520

    Article  PubMed Central  PubMed  Google Scholar 

  • Chow A, Mackauer M (1996) Sequential allocation of offspring sexes in the hyperparasitoid wasp, Dendrocerus carpenteri. Anim Behav 51:859–870

    Article  Google Scholar 

  • Clutton-Brock TH, Albon SD, Guinness FE (1984) Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308:358–360

  • Dijkstra C, Daan S, Buker JB (1990) Adaptive seasonal-variation in the sex-ratio of kestrel broods. Funct Ecol 4:143–147

    Article  Google Scholar 

  • Dijkstra C, Riedstra B, Dekker A, Goerlich VC, Groothuis TGG (2010) An adaptive annual rhythm in the sex of first pigeon egg. Behav Ecol Sociobiol 64:1393–1402

    Article  PubMed Central  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon, London

    Google Scholar 

  • Griffith SC, Ornborg J, Russell AF, Andersson S, Sheldon BC (2003) Correlations between ultraviolet coloration, overwinter survival and offspring sex ratio in the blue tit. J Evol Biol 16:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Hardy ICW (1992) Non-binomial sex allocation and brood sex ratio variances in the parasitoid Hymenoptera. Oikos 65:143–158

    Article  Google Scholar 

  • Hardy ICW (2002) Sex ratios: concepts and research methods. Cambridge University, Cambridge

    Book  Google Scholar 

  • Hardy ICW, Cook JM (1995) Brood sex ratio variance, developmental mortality and virginity in a gregarious parasitoid wasp. Oecologia 103:162–169

    Article  Google Scholar 

  • Heinsohn R, Legge S, Barry S (1997) Extreme bias in sex allocation in Eclectus parrots. Proc R Soc Lond B 264:1325–1329

    Article  Google Scholar 

  • Kahn AT, Kokko H, Jennions MD (2013) Adaptive sex allocation in anticipation of changes in offspring mating opportunities. Nat Commun 4:1603

    Article  PubMed  Google Scholar 

  • Komdeur J (2003) Daughters on request: about helpers and egg sexes in the Seychelles warbler. Proc R Soc Lond B 270:3–11

    Article  Google Scholar 

  • Komdeur J, Daan S, Tinbergen J, Mateman C (1997) Extreme adaptive modification in sex ratio of the Seychelles warbler’s eggs. Nature 385:522–525

    Article  CAS  Google Scholar 

  • Litière S, Alonso A, Molenberghs G (2011) Rejoinder to “A note on Type II error under random effects misspecification in Generalized Linear Mixed Models”. Biometrics 67:654–656

    Article  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Martin JGA, Nussey DH, Wilson AJ, Réale D (2011) Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods Ecol Evol 2:326–374

    Article  Google Scholar 

  • Nager RG, Monaghan P, Griffiths R, Houston DC, Dawson R (1999) Experimental demonstration that offspring sex ratio varies with maternal condition. Proc Natl Acad Sci U S A 96:570–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa S, Freckleton RP (2008) Missing inaction: the dangers of ignoring missing data. Trends Ecol Evol 23:592–596

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Pike TW, Petrie M (2003) Potential mechanisms of avian sex manipulation. Biol Rev 78:553–574

    Article  PubMed  Google Scholar 

  • Rubolini D, Ambrosini R, Romano M, Caprioli M, Fasola M, Bonisoli-Alquati A, Saino N (2009) Within-clutch egg size asymmetry covaries with embryo sex in the yellow-legged gull Larus michahellis. Behav Ecol Sociobiol 63:1809–1819

    Article  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Calza S, Møller AP, Pilastro A (2002) Offspring sexual dimorphism and sex-allocation in relation to parental age and paternal ornamentation in the barn swallow. Mol Ecol 11:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Schielzeth H, Forstmeier W (2009) Conclusions beyond support: overconfident estimates in mixed models. Behav Ecol 20:416–420

    Article  PubMed Central  PubMed  Google Scholar 

  • Slagsvold T, Andvik J, Rofstad G, Lorentsen O, Husby M (1984) On the adaptive value of intraclutch egg-size variation in birds. Auk 101:685–697

    Article  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • van de Pol M (2012) Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Methods Ecol Evol 3:268–280

    Article  Google Scholar 

  • van de Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–759

    Article  Google Scholar 

  • Wajnberg E (1993) Genetic variation in sex allocation in a parasitic wasp: variation in sex pattern within sequences of oviposition. Entomol Exp Appl 69:221–229

    Article  Google Scholar 

  • West SA, Sheldon BC (2002) Constraints in the evolution of sex ratio adjustment. Science 295:1685–1688

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EI, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for the constructive comments on the earlier drafts of the manuscript and Prof. Antonella Zambon for the advice on mixed models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ambrosini.

Additional information

Communicated by L. Z. Garamszegi

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosini, R., Rubolini, D. & Saino, N. Analysis of sex sequences by means of generalized linear mixed models. Behav Ecol Sociobiol 68, 1367–1377 (2014). https://doi.org/10.1007/s00265-014-1754-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1754-3

Keywords

Profiles

  1. Diego Rubolini