Skip to main content
Log in

Colony genetic diversity affects task performance in the red ant Myrmica rubra

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

High relatedness and low genetic diversity among individuals in a group is generally considered crucial to the evolution of cooperative behaviour. However, in about a third of social insect species, intracolonial genetic diversity is increased because of derived polyandry (multiple mating by queens) and/or polygyny (multiple reproductive queens). Several studies have shown that increased intracolonial genetic diversity can enhance task performance in honey bees, but evidence of such effect in other social insects is still lacking. Why increased genetic diversity has evolved in some, but not all species, is a fundamental question in sociobiology. In this study, we investigated the effect of intracolonial genetic diversity on the task of nest migration, using the facultatively polyandrous and polygynous red ant Myrmica rubra. Genetic diversity significantly affected migration speed, but its effects were context dependent. Migration speed correlated positively with genetic diversity in one experiment in which migrations were into a known nest site, due to quicker transfer of brood into the new nest once consensus was reached. However, in a another experiment in which migration included scouting for new nest sites, migration speed correlated negatively with genetic diversity, due to slower discovery of new nest sites and slower transfer of brood into the new nest. Our results show for the first time that genetic diversity affects task performance in a social insect other than the honeybee, but that it can produce contrasting effects under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham M, Pasteels J (1980) Social behavior during nest moving in the ant Myrmica rubra. Insect Soc 27:127–147

    Article  Google Scholar 

  • Aron S, Pasteels JM, Deneubourg JL, Boeve JL (1986) Foraging recruitment in Leptothorax unifasciatus: the influence of foraging area familiarity and the age of the nest site. Insect Soc 33:338–351

    Article  Google Scholar 

  • Avargues-Weber A, Monnin T (2009) Dynamics of colony emigration in the ant Aphaenogaster senilis. Insect Soc 56:177–183

    Article  Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    Article  CAS  Google Scholar 

  • Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:1639–1643

    Article  CAS  PubMed  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labour in social insects. Annu Rev Entomol 46:413–440

    Article  CAS  PubMed  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L (1996) Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc R Soc Lond B 263:1565–1569

    Article  Google Scholar 

  • Cammaerts MC, Cammaerts R (1987) Nest topology, nestmate recognition, territoriality and homing in the ant Manica rubida (Hymenoptera, Fomicidae). Biol Behav 12:65–81

    Google Scholar 

  • Cammaerts MC, Cammaerts R (1996) Area marking in the ant Pheidole pallidula (Myrmicinae). Behav Process 37:21–30

    Article  Google Scholar 

  • Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science 285:891–893

    Article  CAS  PubMed  Google Scholar 

  • Constant N, Santorelli LA, Lopes JFS, Hughes WOH (2012) The effects of genotype, caste and age on foraging performance in leaf-cutting ants. Behav Ecol 23:1284–1288

    Article  Google Scholar 

  • Cornwallis CK, West SA, Davis KE, Griffin AS (2010) Promiscuity and the evolutionary transition to complex societies. Nature 466:969–974

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex, England

    Book  Google Scholar 

  • Dobrzanska J, Dobrzanski L (1976) The foraging behavior of the ant Myrmica laevinodis Nyl. Acta Neurobiol Exp 36:545–559

    CAS  Google Scholar 

  • Dornhaus A, Franks NR (2006) Colony size affects collective decision-making in the ant Temnothorax albipennis. Insect Soc 53:420–427

    Article  Google Scholar 

  • Dornhaus A, Franks NR, Hawkins RM, Shere HNS (2004) Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Anim Behav 67:959–963

    Article  Google Scholar 

  • Elmes GW (1991) The social biology of Myrmica ants. Acta Coll Insect Soc 7:17–34

    Google Scholar 

  • Evison SEF, Fenwick J, Hughes WOH (2012a) Parsimonious use of foraging pheromones during nest migration in ants. Anim Behav 84:1237–1242

    Article  Google Scholar 

  • Evison SEF, Webster KA, Hughes WOH (2012b) Better the nest site you know: decision-making during nest migrations by the Pharaoh’s ant. Behav Ecol Sociobiol. doi:10.1007/s00265-012-1319-2

  • Fjerdingstad EJP, Gertsch PJ, Keller L (2003) The relationship between multiple mating by queens, within-colony genetic variability and fitness in the ant Lasius niger. J Evol Biol 16:844–853

    Article  CAS  PubMed  Google Scholar 

  • Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow, opinion polling and collective intelligence in house-hunting social insects. Phil Trans R Soc Lond B 357:1567–1583

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision making. Phil Trans R Soc Lond B 270:2457–2463

    Google Scholar 

  • Gordon DM (1988) Group-level exploration tactics in fire ants. Behaviour 104:162–175

    Article  Google Scholar 

  • Hamilton WD (1964a) The genetical evolution of social behaviour I. J Theor Biol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behaviour II. J Theor Biol 7:17–52

    Article  CAS  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap, Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    Article  PubMed  Google Scholar 

  • Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008a) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Hughes WOH, Ratnieks FLW, Oldroyd BP (2008b) Multiple mating or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J Evol Biol 21:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Jones JC, Myerscough MR, Graham S, Oldroyd BP (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305:402–404

    Article  CAS  PubMed  Google Scholar 

  • Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC (2011) High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334:1548–1551

    Article  CAS  PubMed  Google Scholar 

  • Langridge EA, Franks NR, Sendova-Franks AB (2004) Improvement in collective performance with experience in ants. Behav Ecol Sociobiol 56:523–529

    Article  Google Scholar 

  • Langridge EA, Sendova-Franks AB, Franks NB (2008) How experienced individuals contribute to an improvement in collective performance in ants. Behav Ecol Sociobiol 62:447–456

    Article  Google Scholar 

  • Libbrecht R, Keller L (2013) Genetic compatibility affects division of labor in the argentine ant Linepithema humile. Evolution. doi:10.1111/j.1558-5646.2012.01792.x

  • Lukas D, Clutton-Brock T (2012) Cooperative breeding and monogamy in mammalian societies. Proc R Soc B. doi:10.1098/rspb.2011.2468

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    Article  CAS  PubMed  Google Scholar 

  • Myerscough MR, Oldroyd BP (2004) Simulation models of the role of genetic variability in social insect task allocation. Insect Soc 51:146–152

    Article  Google Scholar 

  • Nehring V, Evison SEF, Santorelli LA, d'Ettorre P, Hughes WOH (2011) Kin-informative recognition cues in ants. Proc R Soc B 278:1942–1948

    Article  PubMed Central  PubMed  Google Scholar 

  • Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Article  PubMed  Google Scholar 

  • Pearson B (1983) Intra-colonial relatedness amongst workers in a population of nests of the polygynous ant, Myrmica rubra Latreille. Behav Ecol Sociobiol 12:1–4

    Article  CAS  Google Scholar 

  • Pezon A, Denis D, Cerdan P, Valenzuela J, Fresneau D (2005) Queen movement during colony emigration in the facultatively polygynous ant Pachycondyla obscuricornis. Naturwissenschaften 92:35–39

    Article  CAS  PubMed  Google Scholar 

  • Pratt SC (2005) Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinisus. Insect Soc 52:383–392

    Article  Google Scholar 

  • Pratt SC, Sumpter DJT (2006) A tunable algorithm for collective decision-making. Proc Natl Acad Sci U S A 103:15906–15910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pratt SC, Mallon EB, Sumpter DJT, Franks NR (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52:117–127

    Article  Google Scholar 

  • Queller DC, Goodnight K (1989) Estimation of genetic relatedness using allozyme data. Evolution 43:258–275

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Reber A, Castella G, Christe P, Chapuisat M (2008) Experimentally increased group diversity improves disease resistance in ants. Ecol Lett 11:682–689

    Article  PubMed  Google Scholar 

  • Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honey-bee colonies. Nature 333:356–358

    Article  Google Scholar 

  • Robinson GE, Page RE (1989) Genetic basis for division of labor in an insect society. In: Breed MD, Page RE (eds) The genetics of social evolution. Westview, Boulder, CO, pp 61–80

    Google Scholar 

  • Rosset H, Keller L, Chapuisat M (2005) Experimental manipulation of colony genetic diversity had no effect on short-term task efficiency in the Argentine ant Linepithema humile. Behav Ecol Sociobiol 58:87–98

    Article  Google Scholar 

  • Scholes DR, Suarez AV (2009) Speed-versus-accuracy trade-offs during nest relocation in Argentine ants (Linepithema humile) and odorous house ants (Tapinoma sessile). Insect Soc 56:413–418

    Article  Google Scholar 

  • Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc Lond B 274:67–72

    Article  Google Scholar 

  • Seeley TD, Visscher PK (2003) Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making. Behav Ecol Sociobiol 54:511–520

    Article  Google Scholar 

  • Seeley TD, Visscher PK (2004) Quorum sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol 56:594–601

    Article  Google Scholar 

  • Seppä P, Walin L (1996) Sociogenetic organisation of the red ant Myrmica rubra. Behav Ecol Sociobiol 38:207–217

    Article  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, Konrad H, Moder K, Christian E, Seifert B, Crozier RH, Stauffer C, Buschinger A (2006) No sympatric speciation here: multiple data sources show that the ant Myrmica microrubra is not a separate species but an alternate reproductive morph of Myrmica rubra. J Evol Biol 19:777–787

    Article  CAS  PubMed  Google Scholar 

  • Stroeymeyt N, Giurfa M, Franks NR (2010) Improving decision speed, accuracy and group cohesion through early information gathering in house-hunting ants. PLoS One 5:e13059

    Article  PubMed Central  PubMed  Google Scholar 

  • Sundström L, Ratnieks FLW (1998) Sex ratio conflicts, mating frequency, and queen fitness in the ant Formica truncorum. Behav Ecol 9:116–121

    Article  Google Scholar 

  • Tarapore D, Floreano D, Keller L (2010) Task-dependent influence of genetic architecture and mating frequency on division of labour in social insect societies. Behav Ecol Sociobiol 64:675–684

    Article  Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B 270:99–103

    Article  Google Scholar 

  • Ugelvig LV, Kronauer DJC, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc Lond B 277:2821–2828

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vepsäläinen K, Ebsen JR, Savolainen R, Boomsma JJ (2009) Genetic differentiation between the ant Myrmica rubra and its microgynous social parasite. Insect Soc 56:425–437

    Article  Google Scholar 

  • Visscher PK (2007) Group decision making in nest-site selection among social insects. Annu Rev Entomol 52:255–275

    Article  CAS  PubMed  Google Scholar 

  • Waddington SJ, Santorelli LA, Ryan FR, Hughes WOH (2010) Genetic polyethism in leaf-cutting ants. Behav Ecol 21:1165–1169

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Richardson for help with part of the work and JC Biesmeijer, T Cameron and two anonymous referees for valuable comments on the manuscript. This work was made possible through a Daphne Jackson Fellowship to EJS, sponsored by the Natural Environment Research Council, UK, and a Leverhulme Foundation prize to WOHH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Slaa.

Additional information

Communicated by L. Keller

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaa, E.J., Chappell, P. & Hughes, W.O.H. Colony genetic diversity affects task performance in the red ant Myrmica rubra . Behav Ecol Sociobiol 68, 903–914 (2014). https://doi.org/10.1007/s00265-014-1703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1703-1

Keywords

Navigation