Skip to main content
Log in

A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Adaptive brain architecture hypotheses predict brain region investment matches the cognitive and sensory demands an individual confronts. Social hymenopteran queen and worker castes differ categorically in behavior and physiology leading to divergent sensory experiences. Queens in mature colonies are largely nest-bound while workers depart nests to forage. We predicted social paperwasp castes would differ in tissue allocation among brain regions. We expected workers to invest relatively more than queens in neural tissues that process visual input. As predicted, we found workers invested more in visual relative to antennal processing than queens both in peripheral sensory lobes and in central processing brain regions (mushroom bodies). Although we did not measure individual brain development changes, our comparative data provide a preliminary test of mechanisms of caste differences. Paperwasp species differ in the degree of caste differentiation (monomorphic versus polymorphic castes) and in colony structure (independent- versus swarm-founding); these differences could correspond to the magnitude of caste brain divergence. If caste differences resulted from divergent developmental programs (experience-expectant brain growth), we predicted species with morphologically distinct queens, and/or swarm-founders, would show greater caste divergence of brain architecture. Alternatively, if adult experience affected brain plasticity (experience-dependent brain growth), we predicted independent-founding species would show greater caste divergence of brain architecture. Caste polymorphism was not related to the magnitude of queen-worker brain differences, and independent-founder caste brain differences were greater than swarm-founder caste differences. Greater caste separation in independent-founder brain structure suggests a role for adult experience in the development of caste-specific brain anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev 76:211–237

    Article  CAS  PubMed  Google Scholar 

  • Arenas A, Giurfa M, Sandoz JC, Hourcade B, Devaud JM, Farina WM (2012) Early olfactory experience induces structural changes in the primary olfactory center of an insect brain. Eur J Neurosci 35:682–690

    Article  CAS  PubMed  Google Scholar 

  • Arrenberg AB, Driever W (2013) Integrating anatomy and function for zebrafish circuit analysis. Front Neural Circ 7:74

    Google Scholar 

  • Barth M, Hirsch HVB, Meinertzhagen IA, Heisenberg M (1997) Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J Neurosci 17:1493–1504

    CAS  PubMed  Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats, and insectivores. Phil Trans Biol Sci 348:381–392

    Article  CAS  Google Scholar 

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Article  Google Scholar 

  • Brown ER, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invert Neurosci 13:35–44

    Article  PubMed  Google Scholar 

  • Bruyndonckx N, Kardile SP, Gadagkar R (2006) Dominance behaviour and regulation of foraging in the primitively eusocial wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Behav Proc 72:100–103

    Article  Google Scholar 

  • Carpenter JM (2004) Synonymy of the genus Marimbonda Richards, 1978, with Leipomeles Mobius, 1856 (Hymenoptera: Vespidae; Polistinae), and a new key to the genera of paper wasps of the new world. Am Mus Novit 3465:1–16

    Article  Google Scholar 

  • Carpenter JM, Kojima J-I, Wenzel JW (2000) Polybia, paraphyly, and polistine phylogeny. Am Mus Novit 3298:1–24

    Article  Google Scholar 

  • Catania KC (2005) Evolution of sensory specializations in insectivores. Anat Rec A: Discov Mol Cell Evol Biol 287:1038–1050

    Article  Google Scholar 

  • Chavarria-Pizarro L, West-Eberhard MJ (2010) The behavior and natural history of Chartergellus, a little-known genus of neotropical social wasps (Vespidae Polistinae Epiponini). Ethol Ecol Evol 22:317–343

    Article  Google Scholar 

  • Chen X, Hu Y, Zheng HQ, Cao LF, Niu DF, Yu DL, Sun YQ, Hu SN, Hu FL (2012) Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochem Mol Biol 42:665–673

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:995–1008

    Article  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 328:313–350

    Article  CAS  PubMed  Google Scholar 

  • De Souza AR, Prezoto F (2012) Regulation of worker activity in the social wasp Polistes versicolor. Insect Soc 59:193–199

    Article  Google Scholar 

  • Durst C, Eichmueller S, Menzel R (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav Neural Biol 62:259–263

    Article  CAS  PubMed  Google Scholar 

  • Ehmer B, Hoy R (2000) Mushroom bodies of vespid wasps. J Comp Neurol 416:93–100

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff R, Lorbeer R-A, Sheiblich H, Heisterkamp A, Meyer HS, MichaelBicker G (2012) Scanning laser optical tomography resolves structural plasticity during regeneration in an insect brain. PLOS ONE 7:e41236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem 5:115–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404

    CAS  PubMed  Google Scholar 

  • Farris SM, Pettrey C, Daly KC (2011) A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera). Arthropod Struct Dev 40:395–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujun X, Hu K, Zhu T, Racey P, Wang X, Sun Y (2012) Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia 29:109–114

    Google Scholar 

  • Groh C, Roessler W (2008) Caste-specific postembryonic development of primary and secondary olfactory centers in the female honeybee brain. Arthropod Struct Devel 37:459–468

    Article  Google Scholar 

  • Groh C, Ahrens D, Rossler W (2006) Environment- and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens. Brain Behav Evol 68:1–14

    Article  PubMed  Google Scholar 

  • Gronenberg W (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol 54:85–95

    Article  CAS  PubMed  Google Scholar 

  • Gronenberg W, Liebig J (1999) Smaller brains and optic lobes in reproductive workers of the ant Harpegnathos. Naturwissenschaften 86:343–345

    Article  CAS  Google Scholar 

  • Gronenberg W, Riveros AJ (2009) Social brains and behavior—past and present. In: Gadau J, Fewell J (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, pp 377–401

    Google Scholar 

  • Gronenberg W, Heeren S, Hölldobler B (1996) Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol 199:2011–2019

    PubMed  Google Scholar 

  • Hansson BS, Stensmyr M (2011) Evolution of insect olfaction. Neuron 72:698–711

    Article  CAS  PubMed  Google Scholar 

  • Herman RA, Queller DC, Strassmann JE (2000) The role of queens in colonies of the swarm-founding wasp Parachartergus colobopterus. Anim Behav 59:841–848

    Article  PubMed  Google Scholar 

  • Hunt JH, O’Donnell S, Chernoff N, Brownie C (2001) Observations on two Neotropical swarm-founding wasps, Agelaia yepocapa and A. panamaensis (Hymenoptera: Vespidae). Ann Entomol Soc Am 98:555–562

    Article  Google Scholar 

  • Hunt JH, Kensinger BJ, Kossuth JA, Henshaw MT, Norberg K, Wolschin F, Amdam GV (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc Natl Acad Sci U S A 104:14020–14025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeanne RL (2003) Social complexity in the Hymenoptera, with special attention to wasps. In: Kitkuchi T, Azuma N, Higashi S (eds) Genes, behaviors and evolution of social insects. Hokkaido University Press, Sapporo, pp 81–131

    Google Scholar 

  • Jones TA, Donlan NA, O’Donnell S (2009) Growth and pruning of mushroom body Kenyon cell dendrites during worker behavioral development in the paper wasp, Polybia aequatorialis (Hymenoptera: Vespidae). Neurobiol Learn Mem 92:485–495

    Article  PubMed  Google Scholar 

  • Julian GE, Gronenberg W (2002) Reduction of brain volume correlates with behavioral changes in queen ants. Brain Behav Evol 60:152–164

    Article  PubMed  Google Scholar 

  • Kuhn-Buhlmann S, Wehner R (2006) Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. J Neurobiol 66:511–521

    Article  PubMed  Google Scholar 

  • Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480

    Article  CAS  PubMed  Google Scholar 

  • Linsey TJ, Bennett MB, Collin SP (2007) Volumetric analysis of sensory brain areas indicates ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raffles Bull Zool 14:7–15

    Google Scholar 

  • Mantini D, Corbetta M, Romani GL, Orban, Vanduffel WJ (2013) Evolutionarily novel functional networks in the human brain? J Neurosci 33:3259–3275

    Article  CAS  PubMed  Google Scholar 

  • Martins JR, Nunes FMF, Cristino AS, Simoes ZP, Bitondi MMG (2010) The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol Biol 11:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Molina Y, O’Donnell S (2008) A developmental test of the dominance-nutrition hypothesis: linking adult feeding, aggression, and reproductive potential in the paperwasp Mischocyttarus mastigophorus. Ethol Ecol Evol 20:125–139

    Article  Google Scholar 

  • Muscedere ML, Traniello JFA (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct patterns of worker brain organization. PLoS One 7:e31618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarrete A, van Schaik CP, Isler K (2011) Energetics and the evolution of human brain size. Nature 480:91–93

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Noll FB, Zucchi R (2000) Increasing caste differences related to life cycle progression in some Neotropical swarm-founding polygynic polistine wasps (Hymenoptera: Vespidae; Epiponini). Ethol Ecol Evol 12:43–65

    Article  Google Scholar 

  • Noll FB, Wenzel JW, Zucchi R (2004) Evolution of caste in Neotropical swarm-founding wasps (Hymenoptera: Vespidae; Epiponini). Am Mus Novit 3467:1–24

    Article  Google Scholar 

  • O’Donnell S (1998a) Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae). Annu Rev Entomol 43:323–346

    Article  PubMed  Google Scholar 

  • O’Donnell S (1998b) Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135:173–193

    Article  Google Scholar 

  • O’Donnell S (2006) Polybia wasp biting interactions recruit foragers following experimental worker removals. Anim Behav 71:709–715

    Article  Google Scholar 

  • O’Donnell S, Donlan NA, Jones TA (2004) Mushroom body structural plasticity is associated with temporal polyethism in eusocial wasp workers. Neurosci Lett 356:159–162

    Article  PubMed  Google Scholar 

  • O’Donnell S, Donlan NA, Jones TA (2007) Developmental and dominance-associated differences in mushroom body structure in the paper wasp Mischocyttarus mastigophorus. Dev Neurobiol 67:39–46

    PubMed  Google Scholar 

  • O’Donnell S, Clifford M, Molina Y (2011) Comparative analysis of constraints and caste differences in brain investment among social paper wasps. Proc Natl Acad Sci U S A 108:7107–7112

    Article  PubMed Central  PubMed  Google Scholar 

  • Roat TC, da Cruz-Landim C (2011) Differentiation of the honey bee (Apis mellifera L.) antennal lobes during metamorphosis: a comparative study among castes and sexes. Anim Biol 61:153–161

    Article  Google Scholar 

  • Shi YY, Yan WY, Huang ZY, Wang ZL, Wu XB, Zeng ZJ (2013) Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera). Naturwissenschaften 100:193–197

    Article  CAS  PubMed  Google Scholar 

  • Shima SN, Yamane S, Zucchi R (1994) Morphological caste differences in some Neotropical swarm-founding polistine wasps I. Apoica flavissima (Hymenoptera, Vespidae). Jap J Entomol 62:811–822

    Google Scholar 

  • Shima SN, Yamane S, Zucchi R (1996) Morphological caste differences in some Neotropical swarm-founding polistine wasps II. Polybia dimidiata (Hymenoptera, Vespidae). Jpn J Entomol 64:131–144

    Google Scholar 

  • Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 124:252–260

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretation of arthropod mushroom bodies. Learn Mem 5:11–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka NK, Endo K, Ito K (2012) Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 520:4067–4130

    Article  PubMed  Google Scholar 

  • Toth AL, Bilof KBJ, Henshaw MT, Hunt JH, Robinson GE (2009) Lipid stores, ovary development, and brain gene expression in Polistes metricus females. Insect Soc 56:77–84

    Article  Google Scholar 

  • Wenzel JW, Carpenter JM (1994) Comparing methods: adaptive traits and tests of adaptation. In: Eggleton P, Vane-Wright RI (eds) Phylogenetics and ecology. Academic Press, London, pp 79–101

    Google Scholar 

  • West-Eberhard MJ (1978) Temporary queens in Metapolybia wasps: nonreproductive helpers without altruism? Science 200:441–443

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (1981) Intragroup selection and the evolution of insect societies. In: Alexander RD, Tinkle DW (eds) Natural selection and social behavior. Chiron, New York, pp 3–17

    Google Scholar 

Download references

Acknowledgments

Thanks to two anonymous reviewers for thoughtful and helpful comments on earlier versions of the paper. Emily Johnson, Joshua Matlock, Yamile Molina, Abigal Mudd, Jason Stafstrom, Eve Swearingen, and Ceri Weber assisted with histology and neuroanatomy. Specimens were collected under research permits from the Republics of Ecuador and Costa Rica and in accordance with their laws. M.R.C. was supported by an NSF Graduate Research Fellowship under Grant No. DGE-0718124; S.O’D. was supported by NSF grant IOS-1209072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean O’Donnell.

Additional information

Communicated by M. Giurfa

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Donnell, S., Clifford, M.R., Bulova, S.J. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav Ecol Sociobiol 68, 529–536 (2014). https://doi.org/10.1007/s00265-013-1667-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1667-6

Keywords

Navigation