Skip to main content

Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis

Abstract

In many termite taxa, colonies occupying the same nesting resource can meet, interact, and merge with unrelated conspecific neighbors. Because proto-termite ancestors likely also co-inhabited resources and experienced interactions with neighboring conspecific families, extant species that form fused colony units may offer fundamental clues to explaining the origins of eusociality in Isoptera, particularly if both original families retain the potential for reproduction. We allowed entire colonies of Zootermopsis nevadensis (Archotermopsidae) to interact, merge, and develop in the lab, then used genetic markers to determine the family of origin of reproductives, soldiers, and helpers. Persisting and new members of all castes arose from both original colonies and in some cases were hybrids of the two original lineages. We also measured the frequency of mixed-family colonies in natural settings. Ten out of 30 field sampled colonies contained mixed families, demonstrating that interactions and fusions are common in nature. We discuss the implications of our findings as a model system for understanding the evolution of eusociality in termites, highlighting the importance of ecological circumstances impacting direct, indirect, and colony-level fitness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abbot P, Abe J, Alcock J, Alizon S, Alpedrinha JAC, Andersson M et al (2011) Inclusive fitness theory and eusociality. Nature 471:E1–E4

    PubMed  Article  CAS  Google Scholar 

  2. Abe T (1991) Ecological factors associated with the evolution of worker and soldier castes in termites. Ann Entomol 9:101–107

    Google Scholar 

  3. Adams ES, Atkinson L, Bulmer M (2007) Relatedness, recognition errors, and colony fusion in the termite Nasutitermes corniger. Behav Ecol Sociobiol 61:1195–1201

    Article  Google Scholar 

  4. Aldrich BT, Kambhampati S (2004) Microsatellite markers for two species of dampwood termites in the genus Zootermopsis (Isoptera: Termopsidae). Mol Ecol Notes 4:719–721

    Article  CAS  Google Scholar 

  5. Aldrich BT, Kambhampati S (2007) Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity 99:443–451

    PubMed  Article  CAS  Google Scholar 

  6. Alexander RD, Noonan KM, Crespi BJ (1991) The evolution of eusociality. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 3–44

    Google Scholar 

  7. Andersson M (1984) The evolution of eusociality. Annu Rev Ecol Syst 15:165–189

    Google Scholar 

  8. Andrew BJ (1930) Method and rate of protozoan refaunation in the termite Termopsis angusticollis Hagen. Univ Calif Publs Zool 33:449–470

    Google Scholar 

  9. Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131–1136

    Article  Google Scholar 

  10. Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism by eusocial bees. Ann Rev Entomol 53:19–37

    Article  CAS  Google Scholar 

  11. Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:673–683

    Article  Google Scholar 

  12. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Phil Trans R Soc B 364:1–17

    Article  Google Scholar 

  13. Boomsma JJ, Beekman M, Cornwallis CK, Griffin AS, Holman L, Hughes WOH, Keller L, Oldroyd BP, Ratnieks FLW (2011) Only full-sibling families evolved eusociality. Nature 471:E4–E5

    PubMed  Article  CAS  Google Scholar 

  14. Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243

    Article  Google Scholar 

  15. Charnov EL (1978) Evolution of eusocial behavior: Offspring choice or parental parasitism? J Theor Biol 75:451

    PubMed  Article  CAS  Google Scholar 

  16. Clément JL (1986) Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographic and seasonal variations. Sociobiology 11:311–323

    Google Scholar 

  17. Crespi BJ (1996) Comparative analysis of the origins and losses of eusociality: causal mosaics and historical uniqueness. In: Martins E (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, New York, pp 253–287

    Google Scholar 

  18. Deheer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441

    PubMed  Article  Google Scholar 

  19. Field J, Cronin A, Bridge C (2006) Future fitness and helping in social queues. Nature 441:214–217

    PubMed  Article  CAS  Google Scholar 

  20. Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400

    PubMed  Article  Google Scholar 

  21. Fletcher JA, Zwick M, Doebeli M, Wilson DS (2006) What's wrong with inclusive fitness? Trends Ecol Evol 21:597–598

    PubMed  Article  Google Scholar 

  22. Foitzik S, Heinze J (1998) Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav Ecol 9:367–375

    Article  Google Scholar 

  23. Foitzik S, Sturm H, Pusch K, D'Ettorre P, Heinze J (2007) Nestmate recognition and intraspecific chemical and genetic variation in Temnothorax ants. Anim Behav 73:999–1007

    Article  Google Scholar 

  24. Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57–60

    PubMed  Article  Google Scholar 

  25. Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83

    PubMed  Google Scholar 

  26. Grassé PP (1986) Termitologia, vol 3. Tome III: Masson, Paris, Masson

    Google Scholar 

  27. Hacker M, Kaib M, Bagine RKN, Epplen JT, Brandl R (2005) Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol Ecol 14:1527–1532

    PubMed  Article  CAS  Google Scholar 

  28. Hamilton WD (1964) The genetical evolution of social behavior I, II. J Theor Biol 7:1–52

    PubMed  Article  CAS  Google Scholar 

  29. Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3:193–232

    Article  Google Scholar 

  30. Hansell MH (1987) Nest building as a facilitating and limiting factor in the evolution of eusociality in the Hymenoptera. In: Harvey PH, Patridge L (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 155–181

    Google Scholar 

  31. Higashi M, Yamamura N, Abe T, Burns TP (1991) Why don't all termite species have a sterile worker caste? Proc R Soc Lond B 246:25–29

    Article  CAS  Google Scholar 

  32. Howard KJ, Thorne BL (2011) Eusocial evolution in termites and Hymenoptera. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 97–132

    Google Scholar 

  33. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216

    PubMed  Article  CAS  Google Scholar 

  34. Hunt JH (1999) Trait mapping and salience in the evolution of eusocial vespid wasps. Evolution 53:225–237

    Article  Google Scholar 

  35. Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal protozoa, and general observations on the Isoptera. Phil Trans R Soc Lond 209:75–180

    Google Scholar 

  36. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967

    PubMed  Article  CAS  Google Scholar 

  37. Johns PM, Howard KJ, Breisch NL, Rivera A, Thorne BL (2009) Nonrelatives inherit colony resources in a primitive termite. Proc Natl Acad Sci USA 106:17452–17456

    PubMed  Article  CAS  Google Scholar 

  38. Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  39. Kellner K, Barth B, Heinze J (2010) Colony fusion causes within-colony variation in a parthenogenetic ant. Behav Ecol Sociobiol 64:737–746

    Article  Google Scholar 

  40. Kirby H (1949) Systematic differentiation and evolution of flagellates in termites. Rev Soc Mex Hist Nat 10:57–79

    Google Scholar 

  41. Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc R Soc Lond B 266:571–578

    Article  Google Scholar 

  42. Korb J, Roux EA (2012) Why join a neighbor: fitness consequences of colony fusions in termites. J Evol Biol 25:2161–2170

    PubMed  Article  Google Scholar 

  43. Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower termite? Evol Ecol 21:817–828

    Article  Google Scholar 

  44. Kronauer DJC, Schöning C, D'Ettorre P, Boomsma JJ (2010) Colony fusion and worker reproduction after queen loss in army ants. Proc R Soc B 277:755–763

    PubMed  Article  Google Scholar 

  45. Leadbeater E, Carruthers JM, Green JP, van Heusden J, Field J (2010) Unrelated helpers in a primitively eusocial wasp: is helping tailored towards direct fitness? PLoS One 5:e11997

    PubMed  Article  Google Scholar 

  46. Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627

    PubMed  Article  CAS  Google Scholar 

  47. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. version 1.0 (d16c). Free program distributed by the authors over the Internet from http://lewiseebuconnedu/lewishome/softwarehtml

  48. Lo N, Eggleton P (2011) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50

    Google Scholar 

  49. Lüscher M (1952) Die Produktion und Elimination von Ersatzgeschlechtstieren bei der Termite Kalotermes flavicollis (Fabr.). Z Vergl Physiol 34:123–141

    Google Scholar 

  50. Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694–739

    Google Scholar 

  51. McKelvey KS, Johnston JD (1992) Historical perspectives on forests of the Sierra Nevada and the Transverse Ranges of southern California: forest conditions at the turn of the century. In: Verner J, McKelvey KS, Noon BR, Gutiérrez RJ, Gould GI, Beck TW (eds) The California spotted owl: a technical assessment of its current status. General Technical Report PSW-GTR-133. U.S. Forest Service, Berkeley, pp 225–246

  52. Michener CD (1974) The social behavior of bees. Harvard University Press, Cambridge

    Google Scholar 

  53. Miyata H, Furuichi H, Kitade O (2004) Patterns of neotenic differentiation in a subterranean termite, Reticulitermes speratus (Isoptera: Rhinotermitidae). Entomol Sci 7:309–314

    Article  Google Scholar 

  54. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–94

    Google Scholar 

  55. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57–104

    Google Scholar 

  56. Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites. Academic Press, New York, pp 311–350

    Google Scholar 

  57. Noirot C (1985) Pathways of caste development in the lower termites. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Osford Pergamon, Oxford, pp 41–58

    Google Scholar 

  58. Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Cell Mol Life Sci 43:851–860

    Article  Google Scholar 

  59. Nonacs P (2011) Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evol Biol 11:58

    PubMed  Article  Google Scholar 

  60. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062

    PubMed  Article  CAS  Google Scholar 

  61. Nowak MA, Tarnita CE, Wilson EO (2011) Nowak et al. reply. Nature 471:E9–E10

    Article  CAS  Google Scholar 

  62. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630

    PubMed  Article  CAS  Google Scholar 

  63. Perdereau E, Bagnères AG, Dupont S, Dedeine F (2010) High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insect Soc 57:393–402

    Article  Google Scholar 

  64. Queller DC, Zacchi F, Cervo R, Turillazzi S, Henshaw MT, Santorelli LA, Strassmann JE (2000) Unrelated helpers in a social insect. Nature 405:784–787

    PubMed  Article  CAS  Google Scholar 

  65. Ratnieks FLW, Wenseleers T (2008) Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol Evol 23:45–52

    PubMed  Article  Google Scholar 

  66. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119

    Google Scholar 

  67. Roisin Y, Korb J (2011) Social organization and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164

    Google Scholar 

  68. Rousset F, Lion S (2011) Much ado about nothing: Nowak et al'.s charge against inclusive fitness theory. J Evol Biol 24:1386–1392

    PubMed  Article  CAS  Google Scholar 

  69. Sanetra M, Crozier RH (2002) Daughters inherit colonies from mothers in the 'living-fossil' ant Nothomyrmecia macrops. Naturwissenschaften 89:71–74

    PubMed  Article  CAS  Google Scholar 

  70. Satow S, Satoh T, Hirota T (2013) Colony fusion in a parthenogenetic ant, Pristomyrmex punctatus. J Insect Sci 13:38

    PubMed  Article  Google Scholar 

  71. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe J, Crespi B (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93

    Google Scholar 

  72. Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869–876

    Article  Google Scholar 

  73. Springhetti A (1969) I1 controllo sociale della differenziazione degli alati in Kalotermes flavicollis (Isoptera). Ann dell’ Univ di Ferrara (Sezione 3) 3:73–96

    Google Scholar 

  74. Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145

    PubMed  Article  CAS  Google Scholar 

  75. Thorne BL (1982) Multiple primary queens in termites: phyletic distribution, ecological context and a comparison to polygyny in Hymenoptera. In: Breed M, Michener C, Evans H (eds) The biology of social insects. Westview Press, Boulder, pp 206–211

  76. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Article  Google Scholar 

  77. Thorne BL, Carpenter JM (1992) Phylogeny of the Dictyoptera. Syst Entomol 17:253–268

    Article  Google Scholar 

  78. Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306

    PubMed  Article  CAS  Google Scholar 

  79. Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Article  Google Scholar 

  80. Thorne BL, Breisch NL, Haverty MI (2002) Longevity of kings and queens and first time of production of fertile progeny in dampwood termite (Isoptera; Termopsidae; Zootermopsis) colonies with different reproductive structures. J Anim Ecol 71:1030–1041

    Article  Google Scholar 

  81. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci USA 100:12808–12813

    PubMed  Article  CAS  Google Scholar 

  82. Ulrich Y, Perrin N, Chapuisat M (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol Ecol 18:1791–1800

    PubMed  Article  Google Scholar 

  83. Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer R, Breed M, Winston M, Espelie K (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 79–103

    Google Scholar 

  84. Vargo EL (2003) Hierarchical analysis of colony and population genetic structure of the Eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evol 57:2805–2818

    Google Scholar 

  85. Vásquez GM, Schal C, Silverman J (2009) Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J Chem Ecol 35:922–932

    PubMed  Article  Google Scholar 

  86. Vásquez GM, Silverman J (2008) Intraspecific aggression and colony fusion in the Argentine ant. Anim Behav 75:583–593

    Article  Google Scholar 

  87. West SA, Gardner A (2010) Altruism, spite, and greenbeards. Science 327:1341–1344

    PubMed  Article  CAS  Google Scholar 

  88. West-Eberhard MJ (1978) Polygyny and the evolution of social behavior in wasps. J Kansas Entomol Soc 51:832–856

    Google Scholar 

  89. Wilson EO (1990) Success and dominance in ecosystems: the case of the social insects. Ecology Institute, Oldendorf

    Google Scholar 

  90. Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58:17–25

    Article  Google Scholar 

  91. Wilson EO, Holldobler B (2005) Eusociality: origin and consequences. Proc Natl Acad Sci U S A 102:13367–13371

    PubMed  Article  CAS  Google Scholar 

  92. Wilson DS, Wilson EO (2007) Rethinking the theoretical foundation of sociobiology. Q Rev Biol 82:327–348

    PubMed  Article  Google Scholar 

  93. Wongvilas S, Deowanish S, Lim J, Xie VRD, Griffith OW, Oldroyd BP (2010) Interspecific and conspecific colony mergers in the dwarf honey bees Apis andreniformis and A. florea. Insect Soc 57:251–255

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Michael Haverty, Vernard Lewis, and Brad Kard for the assistance and expertise in collecting termites, and R. Abdul-Haqq, J. Baxley, M. Jones, A. Kelman, N. Lemanski, K. MacBride-Gill, C. Malabanan, P. Miller, M. Muscedere, S. Pinsky, B. Puszkiewicz, A. Rivera, L. Rodriguez, J. Sandt, M. TerAvest, and A. Tkaczuk for the assistance in the lab. The authors also thank Dr. William Wcislo and two anonymous reviewers for suggestions that improved the manuscript. This work was supported by the National Science Foundation grant IBN-0414596 to BLT which supported the first two authors as postdoctoral researchers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Howard.

Additional information

Communicated by W. T. Wcislo

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Howard, K.J., Johns, P.M., Breisch, N.L. et al. Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis . Behav Ecol Sociobiol 67, 1575–1585 (2013). https://doi.org/10.1007/s00265-013-1569-7

Download citation

Keywords

  • Eusocial
  • Termites
  • Isoptera
  • Accelerated inheritance
  • Colony fusion
  • Neotenics
  • Replacement reproductives