Behavioral Ecology and Sociobiology

, Volume 67, Issue 8, pp 1205–1217 | Cite as

Rapid sperm evolution in the bluethroat (Luscinia svecica) subspecies complex

  • Silje HognerEmail author
  • Terje Laskemoen
  • Jan T. Lifjeld
  • Václav Pavel
  • Bohumír Chutný
  • Javier García
  • Marie-Christine Eybert
  • Ekaterina Matsyna
  • Arild Johnsen
Original Paper


Spermatozoa are among the most variable animal cell types, and much research is currently directed towards explaining inter- and intraspecific variation in sperm form and function. Recent comparative studies in passerine birds have found associations between the level of sperm competition and both sperm length and sperm velocity. In species with sperm competition, postcopulatory sexual selection may shape the morphology of sperm as adaptations to the female environment. The speed of evolutionary change in sperm morphology at the species level is largely unknown. In this study, we analysed variation in sperm morphology among morphologically distinct and geographically isolated bluethroat subspecies in Europe. Consistent with previous studies, our analyses of mtDNA and nuclear introns suggest recent divergence and lack of lineage sorting among the subspecies. We found significant divergence in total sperm length and in the length of some sperm components (i.e. head and midpiece). There was a significantly positive relationship between pairwise divergences in sperm morphology and mitochondrial DNA, suggesting a role for genetic drift in sperm divergence. The magnitude of sperm length divergence was considerably higher than that in other geographically structured passerines, and even higher than that observed between several pairs of sister species. We hypothesize that the rapid sperm evolution in bluethroats is driven by sperm competition, and that strong postcopulatory sexual selection on sperm traits can lead to rapid speciation through reproductive incompatibilities.


Sperm competition Sperm morphology Sperm size variation Reproductive isolation 



We thank Marc Naguib for providing us with blood samples of L. megarhynchos, Patrick Bonnet, Sophie Questiau and Matthieu Marquet for help in the field, Eirik Rindal for statistical support, and Melissah Rowe, Becky Cramer and Gunnhild Marthinsen for helpful comments on the manuscript. Funding was provided by the Natural History Museum, University of Oslo (PhD fellowship to SH) and by the Ministry of Education of the Czech Republic (MSM6198959212) to VP.

Ethical standards

All authors declare that the present study complies with the current laws and ethical standards of animal research in Czech Republic, France, Germany, Norway, Poland, Russia and Spain.

Conflict of interest

The authors declare that they have no conflict of interest.

Genbank accession numbers

VLDLR7: KC595671–KC595724

BRM15: KC595725–K C595778

Control region: KC595779–KC595862

COI: KC789558–KC789641

Supplementary material

265_2013_1548_MOESM1_ESM.docx (17 kb)
Table S1 (DOCX 16.7 kb)
265_2013_1548_MOESM2_ESM.docx (61 kb)
Table S2 (DOCX 61 kb)
265_2013_1548_MOESM3_ESM.docx (18 kb)
Table S3 (DOCX 17.5 kb)
265_2013_1548_MOESM4_ESM.docx (22 kb)
Table S4 (DOCX 21 kb)
265_2013_1548_Fig4_ESM.jpg (1.2 mb)
Fig. S1 Maximum likelihood tree (Tamura-3-Parameter model, 10,000 bootstrap replicates) based on the intron BRM-15 (353 bp) for 53 bluethroats. Only bootstrap values above 50 % are shown. Grey = azuricollis, blue = cyanecula, red = namnetum, black = svecica and green = the outgroup L. megarhynchos (JPEG 1244 kb)
265_2013_1548_MOESM5_ESM.eps (2.6 mb)
High resolution image (EPS 2611 kb)
265_2013_1548_Fig5_ESM.jpg (1.5 mb)
Fig. S2 Maximum likelihood tree (Kimura-2-Parameter model, 10,000 bootstrap replicates) based on the intron VLDLR (580 bp) for 53 bluethroats. Only bootstrap values above 50 % are shown. Grey = azuricollis, blue = cyanecula, red = namnetum, black = svecica and green = the outgroup L. megarhynchos (JPEG 1524 kb)
265_2013_1548_MOESM6_ESM.eps (3 mb)
High resolution image (EPS 3117 kb)


  1. Andersson M (1994) Sexual selection. Princeton University Press, New JerseyGoogle Scholar
  2. Balshine S, Leach BJ, Neat F, Werner NY, Montgomerie R (2001) Sperm size of African cichlids in relation to sperm competition. Behav Ecol 12:726–731CrossRefGoogle Scholar
  3. Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic, San DiegoGoogle Scholar
  4. Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-Juarez H (2005) Genetic effects on sperm design in the zebra finch. Nature 434:383–387PubMedCrossRefGoogle Scholar
  5. Breed WG, Taylor J (2000) Body mass, testes mass, and sperm size in murine rodents. J Mammal 81:758–768CrossRefGoogle Scholar
  6. Briskie JV, Montgomerie R, Birkhead TR (1997) The evolution of sperm size in birds. Evolution 51:937–945CrossRefGoogle Scholar
  7. Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224PubMedCrossRefGoogle Scholar
  8. Byrne PG, Roberts JD, Simmons LW (2002) Sperm competition selects for increased testes mass in Australian frogs. J Evol Biol 15:347–355CrossRefGoogle Scholar
  9. Byrne PG, Simmons LW, Roberts JD (2003) Sperm competition and the evolution of gamete morphology in frogs. Proc R Soc Lond B 270:2079–2086CrossRefGoogle Scholar
  10. Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS One 2:e413PubMedCrossRefGoogle Scholar
  11. Clements JF, Schulenberg TS, Iliff MJ, Sullivan BL, Wood CL, Roberson D (2012) The eBird/Clements checklist of birds of the world: Version 6.7. Avaliable at
  12. Cohen J (1977) Reproduction. Butterworths, LondonGoogle Scholar
  13. Coyne JA, Orr AH (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  14. Cramer ERA, Laskemoen T, Kleven O, Lifjeld JT (2013) Sperm length variation in house wrens troglodytes aedon. J Ornithol 154:129–138CrossRefGoogle Scholar
  15. Cramp S (ed) (1988) The birds of the Western Palearctic. Handbook of birds in Europe, the Middle East and Africa, vol 5. Oxford University Press, OxfordGoogle Scholar
  16. del Hoyo J, Elliot A, Christie DA (eds) (2006) Handbook of the birds of the world, vol 11. Lynx Edicions, BarcelonaGoogle Scholar
  17. Dixon A, Birkhead TR (1997) Reproductive anatomy of the reed bunting: a species which exhibits a high degree of sperm competition through extra-pair copulations. Condor 99:966–969CrossRefGoogle Scholar
  18. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50Google Scholar
  20. Gage MJG (1994) Associations between body-size, mating pattern, testis size and sperm lengths across butterflies. Proc R Soc Lond B 258:247–254CrossRefGoogle Scholar
  21. Gage MJG, Freckleton RP (2003) Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc R Soc Lond B 270:625–632CrossRefGoogle Scholar
  22. Gill F, Donsker D (eds) (2012) IOC World Bird Names (v 3.2). Available at
  23. Gomendio M, Roldan ERS (1991) Sperm competition influences sperm size in mammals. Proc R Soc Lond B 243:181–185CrossRefGoogle Scholar
  24. Grether GF (2010) Sexual selection and speciation. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic, Oxford, pp 177–183CrossRefGoogle Scholar
  25. Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212PubMedCrossRefGoogle Scholar
  26. Harcourt AH, Purvis A, Liles L (1995) Sperm competition: mating system, not breeding season, affects testes size of primates. Funct Ecol 9:468–476CrossRefGoogle Scholar
  27. Higginson DM, Miller KB, Segraves KA, Pitnick S (2012) Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci U S A 109:4538–4543PubMedCrossRefGoogle Scholar
  28. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101PubMedCrossRefGoogle Scholar
  29. Hogner S, Laskemoen T, Lifjeld JT, Porkert J, Kleven O, Albayrak T, Kabasakal B, Johnsen A (2012) Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus. Ecol Evol 2:2974–2988PubMedCrossRefGoogle Scholar
  30. Hosken DJ (1997) Sperm competition in bats. Proc R Soc Lond B 264:385–392CrossRefGoogle Scholar
  31. Howard DJ, Paulumbi SR, Birge LM, Manier MK (2009) Sperm and speciation. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, Oxford, pp 367–403CrossRefGoogle Scholar
  32. Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159PubMedGoogle Scholar
  33. Immler S, Birkhead TR (2007) Sperm competition and sperm midpiece size: no consistent pattern in passerine birds. Proc R Soc Lond B 274:561–568CrossRefGoogle Scholar
  34. Johnsen A, Lifjeld JT (1995) Unattractive males guard their mates more closely: an experiment with bluethroats (Aves, Turdidae: Luscinia s. svecica). Ethology 101:200–212CrossRefGoogle Scholar
  35. Johnsen A, Lifjeld JT (2003) Ecological constraints on extra-pair paternity in the bluethroat. Oecologia 136:476–483PubMedCrossRefGoogle Scholar
  36. Johnsen A, Andersson S, Fernandez JG, Kempenaers B, Pavel V, Questiau S, Raess M, Rindal E, Lifjeld JT (2006) Molecular and phenotypic divergence in the bluethroat (Luscinia svecica) subspecies complex. Mol Ecol 15:4033–4047PubMedCrossRefGoogle Scholar
  37. Johnsen A, Rindal E, Ericson P, Zuccon D, Kerr K, Stoeckle M, Lifjeld JT (2010) DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J Ornithol 151:565–578CrossRefGoogle Scholar
  38. Kleven O, Jacobsen F, Robertson RJ, Lifjeld JT (2005) Extrapair mating between relatives in the barn swallow: a role for kin selection? Biol Lett 1:389–392PubMedCrossRefGoogle Scholar
  39. Kleven O, Øigarden T, Foyn BE, Moksnes A, Røskaft E, Rudolfsen G, Stokke BG, Lifjeld JT (2007) Low frequency of extrapair paternity in the common redstart (Phoenicurus phoenicurus). J Ornithol 148:373–378CrossRefGoogle Scholar
  40. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499PubMedCrossRefGoogle Scholar
  41. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473PubMedCrossRefGoogle Scholar
  42. Landry C, Geyer LB, Arakaki Y, Uehara T, Palumbi SR (2003) Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. Proc R Soc Lond B 270:1839–1847CrossRefGoogle Scholar
  43. Laskemoen T, Kleven O, Fossøy F, Lifjeld JT (2007) Intraspecific variation in sperm length in two passerine species, the bluethroat Luscinia svecica and the willow warbler Phylloscopus trochilus. Ornis Fenn 84:131–139Google Scholar
  44. Laskemoen T, Albrecht T, Bonisoli-Alquati A, Cepak J, De Lope F, Hermosell IG, Johannessen LE, Kleven O, Marzal A, Mousseau TA, Møller AP, Roberthson RJ, Rudolfsen G, Saino N, Vortman Y, Lifjeld JT (2013) Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behav Ecol Sociobiol 67:301–309CrossRefGoogle Scholar
  45. Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812PubMedCrossRefGoogle Scholar
  46. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  47. Lifjeld JT, Slagsvold T, Lampe HM (1991) Low-frequency of extra-pair paternity in pied flycatchers revealed by DNA fingerprinting. Behav Ecol Sociobiol 29:95–101CrossRefGoogle Scholar
  48. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 5:e13456PubMedCrossRefGoogle Scholar
  49. Lifjeld JT, Laskemoen T, Kleven O, Pedersen ATM, Lampe HM, Rudolfsen G, Schmoll T, Slagsvold T (2012) No evidence for pre-copulatory sexual selection in a passerine bird. PLoS One 7:e32611PubMedCrossRefGoogle Scholar
  50. Lifjeld JT, Hoenen A, Johannessen LE, Laskemoen T, Lopes R, Rodrigues P, Rowe M (2013) The Azores bullfinch (Pyrrhula murina) has the same unusual and size-variable sperm morphology as the Eurasian bullfinch (Pyrrhula pyrrhula). Biol J Linn Soc 108:677–687CrossRefGoogle Scholar
  51. Lüpold S, Calhim S, Immler S, Birkhead TR (2009a) Sperm morphology and sperm velocity in passerine birds. Proc R Soc Lond B 276:1175–1181CrossRefGoogle Scholar
  52. Lüpold S, Linz G, Birkhead TR (2009b) Sperm design and variation in the new world blackbirds (icteridae). Behav Ecol Sociobiol 63:899–909CrossRefGoogle Scholar
  53. Lüpold S, Westneat DF, Birkhead TR (2011) Geographical variation in sperm morphology in the red-winged blackbird (Agelaius phoeniceus). Evol Ecol 25:373–390CrossRefGoogle Scholar
  54. Maan ME, Seehausen O (2011) Ecology, sexual selection and speciation. Ecol Lett 14:591–602PubMedCrossRefGoogle Scholar
  55. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  56. Mayaud N (1958) La Gorge-Bleu à miroir (Luscinia svecica) en Europe. Evolution des populations. Zones d’hivernage. Alauda 26:290–301Google Scholar
  57. Møller AP (1991) Sperm competition, sperm depletion, paternal care, and relative testis size in birds. Am Nat 137:882–906CrossRefGoogle Scholar
  58. Morrow EH, Gage MJG (2000) The evolution of sperm length in moths. Proc R Soc Lond B 267:307–313CrossRefGoogle Scholar
  59. Morrow EH, Gage MJG (2001) Artificial selection and heritability of sperm length in Gryllus bimaculatus. Heredity 87:356–362PubMedCrossRefGoogle Scholar
  60. Päckert M, Martens J, Tietze DT, Dietzen C, Wink M, Kvist L (2007) Calibration of a molecular clock in tits (paridae)—do nucleotide substitution rates of mitochondrial genes deviate from the 2 % rule? Mol Phylogenet Evol 44:1–14PubMedCrossRefGoogle Scholar
  61. Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371PubMedCrossRefGoogle Scholar
  62. Peiponen VA (1960) Verhaltensstudien am Blaukehlchen (Luscinia s. svecica). Ornis Fenn 37:69–83Google Scholar
  63. Pitnick S, Hosken DJ, Birkhead TR (2009) Sperm morphological diversity. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, Oxford, pp 69–149CrossRefGoogle Scholar
  64. Pizzari T, Parker GA (2009) Sperm competition and sperm phenotype. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, Oxford, pp 206–245Google Scholar
  65. Pulquério MJF, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends Ecol Evol 22:180–184PubMedCrossRefGoogle Scholar
  66. Questiau S, Eybert MC, Gaginskaya AR, Gielly L, Taberlet P (1998) Recent divergence between two morphologically differentiated subspecies of bluethroat (Aves: Muscicapidae: Luscinia svecica) inferred from mitochondrial DNA sequence variation. Mol Ecol 7:239–245PubMedCrossRefGoogle Scholar
  67. Questiau S, Eybert MC, Taberlet P (1999) Amplified fragment length polymorphism (AFLP) markers reveal extra-pair parentage in a bird species: the bluethroat (Luscinia svecica). Mol Ecol 8:1331–1339PubMedCrossRefGoogle Scholar
  68. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  69. Rowe M, Pruett-Jones S (2011) Sperm competition selects for sperm quantity and quality in the Australian Maluridae. PLoS One 6:e15720PubMedCrossRefGoogle Scholar
  70. Rowe M, Laskemoen T, Johnsen A, Lifjeld JT (2013) Evolution of sperm structure and energetics in passerine birds Proc R Soc Lond B 280:20122616 Google Scholar
  71. Schmoll T, Kleven O (2011) Sperm dimensions differ between two Coal Tit Periparus ater populations. J Ornithol 152:515–520CrossRefGoogle Scholar
  72. Schmoll T, Dietrich V, Winkel W, Epplen JT, Schurr F, Lubjuhn T (2005) Paternal genetic effects on offspring fitness are context dependent within the extrapair mating system of a socially monogamous passerine. Evolution 59:645–657PubMedGoogle Scholar
  73. Sokal RR, Rohlf FJ (1995) The principles and practice of statistics in biological research, 3rd edn. WH Freeman, New YorkGoogle Scholar
  74. Stockley P, Gage MJG, Parker GA, Møller AP (1997) Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am Nat 149:933–954PubMedCrossRefGoogle Scholar
  75. Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  76. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  77. Turcokova L, Osiejuk TS, Pavel V, Glapan J, Petruskova T (2010) Song divergence of two bluethroat subspecies (Luscinia s. svecica and cyanecula). Ornis Fenn 87:168–179Google Scholar
  78. Turcokova L, Pavel V, Chutny B, Petrusek A, Petruskova T (2011) Differential response of males of a subarctic population of Bluethroat Luscinina svecica svecica to playbacks of their own and foreign subspecies. J Ornithol 152:975–982CrossRefGoogle Scholar
  79. Weatherhead PJ, Boag PT (1995) Pair and extra-pair mating success relative to male quality in red-winged blackbirds. Behav Ecol Sociobiol 37:81–91CrossRefGoogle Scholar
  80. Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population-structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  81. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328PubMedCrossRefGoogle Scholar
  82. Wolfson A (1952) The cloacal protuberance: a means for determining breeding condition in live male passerines. Bird-Banding 23:159–165CrossRefGoogle Scholar
  83. Woolley DM (1970) Selection for the length of the spermatozoan midpiece in the mouse. Genet Res 16:261–275PubMedCrossRefGoogle Scholar
  84. Zink RM, Drovetski SV, Questiau S, Fadeev IV, Nesterov EV, Westberg MC, Rohwer S (2003) Recent evolutionary history of the bluethroat (Luscinia svecica) across Eurasia. Mol Ecol 12:3069–3075PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Silje Hogner
    • 1
    Email author
  • Terje Laskemoen
    • 1
  • Jan T. Lifjeld
    • 1
  • Václav Pavel
    • 2
  • Bohumír Chutný
    • 3
  • Javier García
    • 4
  • Marie-Christine Eybert
    • 5
  • Ekaterina Matsyna
    • 6
  • Arild Johnsen
    • 1
  1. 1.Natural History MuseumUniversity of OsloOsloNorway
  2. 2.Laboratory of OrnithologyPalacký UniversityOlomoucCzech Republic
  3. 3.Praha 10Czech Republic
  4. 4.Área de Ecología, Facultad de Ciencias Biológicas y AmbientalesUniversidad de LeónLeónSpain
  5. 5.University of Rennes 1Rennes cedexFrance
  6. 6.Laboratory of Ornithology, Ecological Centre “Dront”Nizhny NovgorodRussia

Personalised recommendations