Skip to main content
Log in

Differential effects of testosterone metabolites oestradiol and dihydrotestosterone on oxidative stress and carotenoid-dependent colour expression in a bird

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Despite extensive research, the potential costs that keep secondary sexual traits honest and evolutionary stable remain somewhat elusive. Many carotenoid-based signals are regulated by testosterone (T), which has been suggested to impose a cost to the signaller by suppression of the immune system or an increase in oxidative stress. Results are, however, inconsistent, which may be due to the fact that T can be metabolised to both 5α-dihydrotestosterone (DHT, a potent androgen) and oestradiol (E2, a potent oestrogen). To evaluate for the first time the independent effect of these testosterone metabolites on oxidative status, circulating carotenoids and a carotenoid-dependent sexual signal, we administered DHT and E2 to captive non-breeding adult kestrels Falco tinnunculus of both sexes. E2 increased oxidative damage and downregulated the antioxidant barrier without affecting colouration or circulating carotenoids. In contrast, DHT did not affect oxidative status, but increased skin redness, again without affecting circulating carotenoids. No sex-specific effects were found. These results suggest that the pro-oxidant activity of T could be induced indirectly by its metabolite, E2, whereas the other metabolite, DHT, stimulates signal expression. Finally, the study shows that changes in oxidative damage or antioxidant status of plasma were not correlated with either skin redness or circulating carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc R Soc Lond B 274:819–825

    Article  CAS  Google Scholar 

  • Alonzo-Alvarez C, Pérez-Rodríguez L, Mateo R, Chastel O, Viñuela J (2008) The oxidation handicap hypothesis and the carotenoid allocation trade-off. J Evol Biol 21:1789–1797

    Article  Google Scholar 

  • Andersson S, Prager M (2006) Quantifying colors. In: Hill GE, McGraw KJ (eds) Bird coloration, mechanisms and measurements, vol. 1. Harvard University, Massachusetts, pp 41–89

    Google Scholar 

  • Armstrong DG (1984) Ovarian aromatase activity in the domestic fowl (Gallus domesticus). J Endocrinol 100:81–86

    Article  PubMed  CAS  Google Scholar 

  • Ball GF, Balthazart J (2008) Individual variation and the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective. Philos T R Soc Lond B 363:1699–1710

    Article  CAS  Google Scholar 

  • Balthazart J, Ball GF (1998) New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci 21:243–249

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Skutella T, Lezoualc’h F, Post A, Widmann M, Newton CJ, Holsboer F (1997) Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol Pharmacol 51:535–541

    PubMed  CAS  Google Scholar 

  • Bertrand S, Faivre B, Sorci G (2006) Do carotenoid-based sexual straits signal the availability of non-pigmentary antioxidant? J Exp Biol 209:4414–4419

    Article  PubMed  CAS  Google Scholar 

  • Bhat HK, Calaf G, Hei TK, Loya T, Vadgama JV (2003) Critical role of oxidative stress in estrogen-induced carcinogenesis. P Natl Acad Sci USA 100:3913–3918

    Article  CAS  Google Scholar 

  • Blas J, Hiraldo F (2010) Proximate and ultimate factors explaining floating behavior in long-lived birds. Horm Behav 57:169–176

    Article  PubMed  CAS  Google Scholar 

  • Blas J, Perez-Rodriguez L, Bortolotti GR, Vinuela J, Marchant TA (2006) Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signalling. P Natl Acad Sci USA 103:18633–18637

    Article  CAS  Google Scholar 

  • Bluhm CK, Phillips RE, Burke WH (1983) Serum levels of luteinizing hormone, prolactin, estradiol and progesterone in laying and non-laying mallards (Anas platyrhynchos). Biol Reprod 28:295–305

    Article  PubMed  CAS  Google Scholar 

  • Borrás C, Gambini J, Lòpez-Grueso R, Pallardo FV, Vina J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta 1802:205–211

    Article  PubMed  Google Scholar 

  • Brambilla G, Ballerini A, Civitareale C, Fiori M, Neri B, Cavallina R, Nardoni A et al (2003) Oxidative stress as a bio-marker of estrogen exposure in healthy veal calves. Anal Chim Acta 483:281–288

    Article  CAS  Google Scholar 

  • Buchanan KL, Evans M, Goldsmith AR, Bryant DM, Rowe LV (2001) Testosterone influences basal metabolic rate in male house sparrows: a new cost of dominance signalling? Proc R Soc Lond B 268:1337–1344

    Article  CAS  Google Scholar 

  • Bui Q, Weisz J (1988) Identification of microsomal, organic hydroperoxidedependent catechol estrogen formation: comparison with NADPH-dependent mechanism. Pharmacology 36:356–364

    Article  PubMed  CAS  Google Scholar 

  • Bunyagidj C, McLachlan JA (1988) Catechol estrogen formation in mouse uterus. J Steroid Biochem 31:795–801

    Article  PubMed  CAS  Google Scholar 

  • Butler MW, Toomey MB, McGraw K (2011) How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behav Ecol Sociobiol 65:401–413

    Article  Google Scholar 

  • Calderón Guzmán D, Mejía GB, Vásquez IE, García EH, del Angel DS, Olguín HJ (2005) Effect of testosterone and steroids homologues on indolamines and lipid peroxidation in rat brain. J Steroid Biochem Mol Biol 94:369–373

    Article  Google Scholar 

  • Carreau S, Genissel C, Bilinska B, Levallet J (1999) Sources of oestrogen in the testis and reproductive tract of the male. Int J Androl 22:211–223

    Article  PubMed  CAS  Google Scholar 

  • Casagrande S, Groothuis T (2011) The interplay between gonadal steroids and immune defence in affecting a carotenoid-dependent trait. Behav Ecol Sociobiol 65:2007–2019

    Article  PubMed  Google Scholar 

  • Casagrande S, Csermely D, Pini E, Bertacche V, Tagliavini J (2006) Skin carotenoid concentration correlates with male hunting skill and territory quality in the kestrel (Falco tinnunculus). J Avian Biol 37:190–196

    Article  Google Scholar 

  • Casagrande S, Costantini D, Fanfani A, Tagliavini J, Dell’Omo G (2007) Patterns of serum carotenoid accumulation and skin colour variation in kestrel nestlings in relation to breeding conditions and different terms of carotenoid supplementation. J Comp Physiol B 177:237–245

    Article  PubMed  CAS  Google Scholar 

  • Casagrande S, Costantini D, Tagliavini J, Dell’Omo G (2009) Phenotypic, genetic and environmental causes of variation in yellow skin pigmentation and serum carotenoids in Eurasian kestrel nestlings. Ecol Res 24:273–279

    Article  CAS  Google Scholar 

  • Casagrande S, Dijkstra C, Tagliavini J, Goerlich V, Groothuis T (2011a) Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal. J Comp Physiol A 197:1–13

    Article  CAS  Google Scholar 

  • Casagrande S, Dell’Omo G, Costantini D, Tagliavini J, Groothuis T (2011b) Variation of a carotenoid-based trait in relation to oxidative stress and endocrine status during the breeding season in the Eurasian kestrel: a multi-factorial study. Comp Biochem Physiol A 160:16–26

    Article  CAS  Google Scholar 

  • Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D (2000) Estrogens as endogenous genotoxic agents—DNA adducts and mutations. J Natl Canc Inst Monogr 27:75–93

    Article  CAS  Google Scholar 

  • Chapman M (1980) Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res 21:789–853

    PubMed  CAS  Google Scholar 

  • Cohen AA, McGraw KJ (2009) No simple measures for antioxidant status in birds: complexity in inter- and intraspecific correlations among circulating antioxidant types. Funct Ecol 23:310–320

    Article  Google Scholar 

  • Commission Internationale de L'Eclairage (1978) CIE. Light as a true visual quantity: Principles of measurement. ISBN: 9783900734473

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251

    PubMed  Google Scholar 

  • Costantini D, Dell’Omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol A 145:137–142

    Article  Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Article  Google Scholar 

  • Costantini D, Casagrande S, De Filippis S, Brambilla G, Fanfani A, Tagliavini J, Dell’Omo G (2006) Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus). J Comp Physiol B 176:329–337

    Article  PubMed  CAS  Google Scholar 

  • Costantini D, Fanfani A, Dell’Omo G (2007a) Carotenoid availability does not limit the capability of nestling kestrels (Falco tinnunculus) to cope with oxidative stress. J Exp Biol 210:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Costantini D, Coluzza C, Fanfani A, Dell’Omo G (2007b) Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J Comp Physiol B 177:723–731

    Article  PubMed  CAS  Google Scholar 

  • Costantini D, Rowe M, Butler MW, McGraw KJ (2010) From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology. Funct Ecol 24:950–959

    Article  Google Scholar 

  • Cutolo M, Sulli A, Seriolo B, Accardo S, Masi AT (1995) Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 13:217–226

    PubMed  CAS  Google Scholar 

  • Dashti N, Kelley J, Thayer R, Ontko J (1983) Concurrent inductions of avian hepatic lipogenesis, plasma lipids, and plasma apolipoprotein B by estrogen. J Lipid Res 24:368–380

    PubMed  CAS  Google Scholar 

  • Deng YF, Chen XX, Zhou ZL, Hou JF (2010) Letrozole inhibits the osteogenesis of medullary bone in prelay pullets. Poult Sci 89:917–923

    Article  PubMed  CAS  Google Scholar 

  • Foidart A, Silverin B, Baillien M, Harada N, Balthazart J (1998) Neuroanatomical distribution and variations across the reproductive cycle of aromatase activity and aromatase-immunoreactive cells in the pied flycatcher (Ficedula hypoleuca). Horm Behav 33:180–196

    Article  PubMed  CAS  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Fusani L, Van’t Hof T, Hutchison JB, Gahr M (2000) Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. J Neurobiol 43:254–268

    Article  PubMed  CAS  Google Scholar 

  • Fusani L, Hutchison JB, Gahr M (2001) Testosterone regulates the activity and expression of aromatase in the canary neostriatum. J Neurobiol 49:1–8

    Article  PubMed  CAS  Google Scholar 

  • Fusani L, Metzdorf R, Hutchison JB, Gahr M (2003) Aromatase inhibition affects testosterone-induced masculinization of song and the neural song system in female canaries. J Neurobiol 54:370–379

    Article  PubMed  CAS  Google Scholar 

  • Gao G, Dalton JT (2007) Ockham’s razor and selective androgen receptor modulators (SARMs): are we overlooking the role of 5α-reductase? Mol Interv 7:10–13

    Article  PubMed  CAS  Google Scholar 

  • Halifeoglu I, Karatas F, Canatan H, Colak R, Karadas E (2003) Investigation of antioxidant vitamins (A, E and C) and selenium levels in chickens receiving estrogen or testosterone. Cell Biochem Funct 21:133–136

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon, Oxford

    Google Scholar 

  • Han X, Liehr JG (1994) 8-Hydroxylation of guanine bases in kidney and liver DNA of hamsters treated with estradiol: role of free radicals in estrogen-induced carcinogenesis. Cancer Res 54:5515–5517

    PubMed  CAS  Google Scholar 

  • Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    Article  PubMed  Google Scholar 

  • Hau M (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. BioEssays 29:133–144

    Article  PubMed  CAS  Google Scholar 

  • Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hunt K, Wingfield J (2004) Effect of estradiol implants on reproductive behavior of female Lapland longspurs (Calcarius lapponicus). Gen Comp Endocrinol 137:248–262

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JB, Steimer T, Jaggard P (1986) Effects of photoperiod on formation of oestradiol-17b in the dove brain. J Endocrinol 109:371–377

    Article  PubMed  CAS  Google Scholar 

  • Isaksson C, Andersson S (2008) Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc R Soc Lond B 275:309–314

    Article  CAS  Google Scholar 

  • Jansson G (1991) Oestrogen-induced enhancement of myeloperoxidase activity in human polymorphonuclear leukocytes—a possible cause of oxidative stress in inflammatory cells. Free Radic Res Com 14:195–208

    Article  CAS  Google Scholar 

  • Karbownik M, Reiter RJ, Burkhardt S, Gitto E, Tan D-X et al (2001) Melatonin attenuates estradiol-induced oxidative damage to DNA: relevance for cancer prevention. Exp Biol Med 226:707–712

    CAS  Google Scholar 

  • Ketterson ED, Nolan V Jr, Sandell M (2005) Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both? Am Nat 166:S85–S98

    Article  PubMed  Google Scholar 

  • Kimball RT (2006) Hormonal control of coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, mechanisms and measurements, vol. 1. Harvard University, Massachusetts, pp 41–89

    Google Scholar 

  • Kudzma DJ, Swaney JB, Ellis EN (1979) Effect of estrogen administration on the lipoproteins and apoproteins of the chickens. Biochim Biophys Acta 572:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake? Auk 104:116–121

    Google Scholar 

  • Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ (2006) Mechanisms of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, mechanisms and measurements, vol. 1. Harvard University Press, Massachusetts, pp 41–89

    Google Scholar 

  • McGraw KJ, Ardia DR (2007) Do carotenoids buffer testosterone-induced immunosuppression? An experimental test in a colourful songbird. Biol Lett 3:375–378

    Article  PubMed  Google Scholar 

  • McGraw KJ, Parker RS (2006) A novel lipoprotein-mediated mechanism controlling sexual attractiveness in a colorful songbird. Physiol Behav 87:103–108

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ, Correa SM, Adkins-Regan E (2006) Testosterone upregulates lipoprotein status to control sexual attractiveness in a colorful songbird. Behav Ecol Sociobiol 60:117–122

    Article  Google Scholar 

  • Meijer T, Schwabl H (1989) Hormonal patterns in breeding and non-breeding kestrels, Falco tinnunculus: field and laboratory studies. Gen Comp Endocrinol 74:148–160

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24:984–996

    Article  Google Scholar 

  • Mougeot F, Martínez-Padilla J, Webster LMI, Blount JD, Pérez-Rodríguez L, Piertney SB (2009) Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance. Proc R Soc B 276:1093–1100

    Article  PubMed  Google Scholar 

  • Noirot IC, Adler HJ, Cornil CA, Harada N, Dooling RJ, Balthazart J, Ball GF (2009) Presence of aromatase and estrogen receptor alpha in the inner ear of zebra finches. Hear Res 252:49–55

    Article  PubMed  CAS  Google Scholar 

  • Pathak S, Singh R, Verschoyle RD, Greaves P, Farmer PB, Steward WP, Mellon JK, Gescher AJ, Sharma RA (2008) Androgen manipulation alters oxidative DNA adduct levels in androgen-sensitive prostate cancer cells grown in vitro and in vivo. Cancer Lett 261:74–83

    Article  PubMed  CAS  Google Scholar 

  • Pérez C, Lores M, Velando A (2008) Availability of non pigmentary antioxidant affects red coloration in gulls. Behav Ecol 19:967–973

    Article  Google Scholar 

  • Pérez-Rodríguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126

    Article  PubMed  Google Scholar 

  • Pérez-Rodríguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa). Naturwissenschaften 95:821–830

    Article  PubMed  Google Scholar 

  • Razmara A, Ducklesa SP, Krausea DN, Procaccioa V (2007) Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 1176:71–81

    Article  PubMed  CAS  Google Scholar 

  • Reckelhoff JF (2005) Sex steroids, cardiovascular disease, and hypertension—unanswered questions and some speculations. Hypertension 45:170–174

    Article  PubMed  CAS  Google Scholar 

  • Rehder NB, Bird DM, Lagute PC (1986) Variations in plasma corticosterone, estrone, estradiol-I7β, and progesterone concentrations with forced renesting, molt, and body weight of captive female American kestrels. Gen Comp Endocrinol 62:386–393

    Article  PubMed  CAS  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Roya AK, Lavrovskya Y, Songa CS, Chena S, Junga MH, Velua NK, Bia BY et al (1998) Regulation of androgen action vitamins. Hormones 55:309–332

    Google Scholar 

  • Schlinger BA, Arnold PA (1991) Brain is the major site of estrogen synthesis in a male songbird. P Natl Acad Sci USA 88:4191–4194

    Article  CAS  Google Scholar 

  • Schlinger BA, Fivizzani AJ, Callard GV (1989) Aromatase, 5-alpha-reductase and 5-beta-deructase in brain, pituitary and skin of the sex-role reversed Wilsons phalarope. J Endocrinol 122:573–581

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Armstrong DG, Moss R (1986) Changes in aromatase activity in the neuroendocrine tissues of red grouse (Lagopus lagopus scoticus) in relation to the development of long-day refractoriness. J Endocrinol 108:129–135

    Article  PubMed  CAS  Google Scholar 

  • Siitari H, Alatalo RV, Halme P, Buchanan KL, Kilpimaa J (2007) Color signals in the black grouse (Tetrao tetrix): signal properties and their condition dependency. Am Nat 169:S81–S92

    Article  PubMed  Google Scholar 

  • Silverin B (2000) Distribution of aromatase activity in the brain and peripheral tissues of passerine and nonpasserine avian species. Gen Comp Endocrinol 117:34–53

    Article  PubMed  CAS  Google Scholar 

  • Sipe HJ, Jordan SJ, Hanna PM, Mason RP (1994) The metabolism of 17β-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis 15:2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Bindra RK, Gee J, Wingfield JC, Schlinger BA (1999) Androgen-metabolizing enzymes show region-specific changes across the breeding season in the brain of a wild songbird. J Neurobiol 41:176–188

    Article  PubMed  CAS  Google Scholar 

  • Somes RG Jr, George FW, Baron J, Noble JF, Wilson JD (1984) Inheritance of the henny-feathering trait of the Sebright bantam chicken. J Hered 75:99–102

    PubMed  Google Scholar 

  • Tam NNC, Gao Y, Leung YK, Ho SM (2003) Androgenic regulation of oxidative stress in the rat prostate-involvement of NADH(P)H oxidases and anti-oxidant defence machinery during prostatic involution and regrowth. Am J Pathol 163:2513–2522

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Saito N, Nakamura T (1986) Ontogenetic steroidogenesis by testes, ovary, and adrenals of embryonic and postembryonic chickens (Gallus domesticus). Gen Comp Endocrinol 63:456–463

    Article  PubMed  CAS  Google Scholar 

  • Tell LA (1997) Excretion and metabolic fate of radiolabeled estradiol and testosterone in the cockatiel (Nymphicus hollandicus). Zoo Biol 16:505–518

    Article  CAS  Google Scholar 

  • Tramontin AD, Wingfield JC, Brenowitz EA (2003) Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J Neurobiol 57:130–140

    Article  PubMed  CAS  Google Scholar 

  • Tsang Grunder (1984) Production, clearance rates and metabolic fate of estradiol-17 beta in the plasma of the laying hen. Steroids 43:71–84

    Article  PubMed  CAS  Google Scholar 

  • van de Crommenacker J, Richardson DS, Koltz AM, Hutchings K, Komdeur J (2012) Parasitic infection and oxidative status are associated and vary with breeding activity in the Seychelles warbler. Proc R Soc Lond B 279:1466–1476

    Article  Google Scholar 

  • von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Article  Google Scholar 

  • Weisz J, Bui Q, Roy D, Liehr J (1992) Elevated 4-hydroxylation of estradiol by hamster kidney microsomes: a potential pathway of metabolic activation of estrogens. Endocrinology 131:655–661

    Article  PubMed  CAS  Google Scholar 

  • Windahl SH, Andersson N, Börjesson AE, Swanson C, Svensson J et al. (2011) Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice. PLoS ONE 6(6):e21402. doi:10.1371/journal.pone.0021402

  • Zahavi A, Zahavi A (1997) The handicap principle: a missing piece of Darwin’s puzzle. University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank Neil Metcalfe for helpful suggestions based on an earlier version of the manuscript, the associate editor and two anonymous reviewers for providing valuable comments that helped us to improve the presentation of our study. We are grateful to Bonnie de Vries for help with hormone assays, to Alberto Fanfani for supporting the cage building, and to Nadia Macciocchi, Fernando and Serena Costantini for logistic support during the study. S.C. was funded by a MarieCurie Fellowship (FP6-MC-EIF-025369-HormColor).

Ethical standards

The study was authorized by the Distrectual Authority of Parma (prot.865/08.03.2006) and by the Superior Institute for Environmental Protection and Research (ISPRAprot.1612/T-A31/01.03.2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Casagrande.

Additional information

Communicated by J. A. Graves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casagrande, S., Costantini, D., Dell’Omo, G. et al. Differential effects of testosterone metabolites oestradiol and dihydrotestosterone on oxidative stress and carotenoid-dependent colour expression in a bird. Behav Ecol Sociobiol 66, 1319–1331 (2012). https://doi.org/10.1007/s00265-012-1387-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1387-3

Keywords

Navigation