Skip to main content
Log in

Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

To test the hypothesis that the honeybee hybrid zone in South Africa is a tension zone due to increased reproductive conflict in colonies that contain both Apis mellifera capensis and Apis mellifera scutellata worker genotypes, we constructed mixed subspecies and hybrid colonies via a combination of artificial and natural matings. We measured emergence weight, ovary activation, and the presence/absence of a spermatheca on workers of different genotypes. We show that the measured characteristics were all affected by genotype with some traits also affected by the social environment in which the worker was reared. Workers with both an A. m. capensis mother and father had the highest emergence weight. When workers had an A. m. capensis mother, paternity affected emergence weight with A. m. capensis fathers producing heavier workers. When the queen was A. m. scutellata, paternity had less effect on weight. Presence of spermatheca was highest in mixed colonies irrespective of maternity and colonies containing pure A. m. capensis workers only. Paternity had a significant effect on the presence of a spermatheca within mixed colonies, with workers that had an A. m. capensis father being more likely to possess a spermatheca. Rates of ovary activation were highest in colonies with an A. m. scutellata queen mated to drones of both genotypes, suggesting that mixed subspecies colonies likely suffer increased reproductive strife among workers. Our results provide support for the hypothesis that the South African honeybee hybrid zone is a tension zone arising from reduced fitness of genetically mixed colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  CAS  Google Scholar 

  • Allsopp MH (1992) The Capensis calamity. South African Bee J 64(3):52–57

    Google Scholar 

  • Allsopp MH (1993) Summarized overview of the Capensis problem. South African Bee J 65:127–136

    Google Scholar 

  • Allsopp MH, Calis JNM, Boot WJ (2003) Differential feeding of worker larvae affects caste characters in the Cape honey bee, Apis mellifera capensis. Behav Ecol Sociobiol 54(6):555–561

    Article  Google Scholar 

  • Allsopp MH, Beekman M, Gloag RS, Oldroyd BP (2010) Maternity of replacement queens in the thelytokous Cape honey bee Apis mellifera capensis. Behav Ecol Sociobiol 64(4):567–574

    Article  Google Scholar 

  • Arnold G, LeConte Y, Trouiller J, Hervet H, Chappe B, Masson C (1994) Inhibition of worker honeybee ovaries development by a mixture of fatty acid esters from larvae. C R Acad Sci Paris 317:511–515

    CAS  Google Scholar 

  • Beekman M, Calis JNM, Boot WJ (2000) Parasitic honeybees get royal treatment. Nature 404:723

    Article  PubMed  CAS  Google Scholar 

  • Beekman M, Allsopp MH, Wossler TC, Oldroyd BP (2008) Factors affecting the dynamics of the honey bee (Apis mellifera) hybrid zone in South Africa. Heredity 100:13–18

    Article  PubMed  CAS  Google Scholar 

  • Calis JNM, Boot WJ, Allsopp MH, Beekman M (2002) Getting more than a fair share: nutrition of worker larvae related to social parasitism in the Cape honey bee Apis mellifera capensis. Apidologie 33(2):193–202

    Article  Google Scholar 

  • Dade HA (1977) Anatomy and dissection of the honeybee. International Bee Research Association, London

    Google Scholar 

  • de Wilde J, Beetsma J (1982) The physiology of caste development in social insects. Adv Insect Physiol 16:167–246

    Article  Google Scholar 

  • Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet J-M (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430

    Article  PubMed  CAS  Google Scholar 

  • Hepburn HR, Crewe RM (1991) Portrait of the Cape honeybee, Apis mellifera capensis. Apidologie 22:567–580

    Article  Google Scholar 

  • Hepburn HR, Jacot Guillarmod A (1991) The Cape honeybee and the fynbos biome. South African J Sci 87:70–73

    Google Scholar 

  • Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin

    Google Scholar 

  • Hepburn HR, Jones GE, Kirby R (1994) Introgression between Apis mellifera capensis Escholtz and Apis mellifera scutellata Lepeletier: the sting pheromones. Apidologie 25:557–565

    Article  Google Scholar 

  • Hepburn HR, Radloff SE, Fuchs S (1998) Population structure and the interface between Apis mellifera capensis and Apis mellifera scutellata. Apidologie 29:333–346

    Article  Google Scholar 

  • Holmes MJ, Oldroyd BP, Allsopp MH, Lim J, Wossler TC, Beekman M (2010) Maternity of emergency queens in the Cape honey bee, Apis mellifera capensis. Mol Ecol 19:2792–2799

    Article  PubMed  CAS  Google Scholar 

  • Holmes MJ, Allsopp MH, Noach-Pienaar L-A, Wossler TC, Oldroyd BP, Beekman M (2011) Sperm utilization in honeybees (Apis mellifera scutellata and A. m. capensis) in South Africa. Apidologie 42:23–28

    Article  Google Scholar 

  • Hoover SER, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480

    Article  PubMed  CAS  Google Scholar 

  • Hoover SER, Oldroyd BP, Wossler TC, Winston ML (2005a) Anarchistic queen honey bees have normal queen mandibular pheromones. Insectes Soc 52:6–10

    Article  Google Scholar 

  • Hoover SER, Winston ML, Oldroyd BP (2005b) Retinue attraction and ovary activation: responses of wild type and anarchistic honey bees (Apis mellifera) to queen pheromones. Behav Ecol Sociobiol 59:278–284

    Article  Google Scholar 

  • Jordan LA, Allsopp MH, Oldroyd BP, Wossler TC, Beekman M (2007) A scientific note on the drone flight time of Apis mellifera capensis and A. m. scutellata. Apidologie 38:436–437

    Article  Google Scholar 

  • Jordan LA, Allsopp MH, Beekman M, Wossler TC, Oldroyd BP (2008) Inheritance of traits associated with reproductive potential in Apis mellifera capensis and A. m. scutellata workers. J Heredity 99(4):376–381

    Article  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleska R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biology 8(11):e1000506. doi:1000510.1001371/journal.pbio.1000506

    Article  PubMed  Google Scholar 

  • Mackensen O (1943) The occurrence of parthenogenetic females in some strains of honeybees. J Econ Ent 36(3):465–467

    Google Scholar 

  • Mohammedi A, Paris A, Crauser D, LeConte Y (1998) Effect of aliphatic esters on ovary development of queenless bees (Apis mellifera L.). Naturwissenschaften 85:455–458

    Article  CAS  Google Scholar 

  • Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–281

    Article  Google Scholar 

  • Oldroyd BP, Smolenski AJ, Cornuet J-M, Crozier RH (1994) Anarchy in the beehive. Nature 371:749

    Article  CAS  Google Scholar 

  • Oldroyd BP, Wossler TC, Ratnieks FLW (2001) Regulation of ovary activation in worker honey-bees (Apis mellifera): larval signal production and adult response thresholds differ between anarchistic and wild-type bees. Behav Ecol Sociobiol 50:366–370

    Article  Google Scholar 

  • Onions GW (1914) South African ‘fertile worker bees’. South African Ag J 7:44–46

    Google Scholar 

  • Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248

    Article  Google Scholar 

  • Phiancharoen M, Pirk CWW, Radloff SE, Hepburn R (2010) Clinal nature of the frequencies of ovarioles and spermathecae in Cape worker honeybees, Apis mellifera capensis. Apidologie 41:129–134

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225

    Article  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honey bees. Springer, Berlin

    Google Scholar 

  • Schneider SS, Degrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Ann Rev Ent 49:351–376

    Article  CAS  Google Scholar 

  • Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet J-M (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol EcolNotes 3(2):307–311

    Article  CAS  Google Scholar 

  • Tan K, Yang M-X, Radloff SE, Pirk CWW, Crewe RM, Phiancharoen M, Hepburn R, Oldroyd BP (2009) Worker reproduction in mixed-species colonies of honey bees. Behav Ecology 20:1106–1110

    Article  Google Scholar 

  • Tarpy DR, Page RE (2002) Sex determination and the evolution of polyandry in honey bees (Apis mellifera). Behav Ecol Sociobiol 52:143–150

    Article  Google Scholar 

  • Tucker KW (1958) Automictic pathenogenesis in the honey bee. Genetics 43:299–316

    PubMed  CAS  Google Scholar 

  • Velthuis HHW (1970) Ovarian development in Apis mellifera worker bees. Ent Exp et Appl 13:377–394

    Article  Google Scholar 

Download references

Acknowledgements

We thank Christian Fransman for his indispensable help in the field. This work was supported by the Department of Science and Technology-National Research Fund Centre of Excellence (to TCW), the Australian Research Council (grant number DP0878924 to BPO and MB) and the University of Sydney (to MB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Beekman.

Additional information

Communicated by R. Moritz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beekman, M., Allsopp, M.H., Holmes, M.J. et al. Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers. Behav Ecol Sociobiol 66, 897–904 (2012). https://doi.org/10.1007/s00265-012-1338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1338-z

Keywords

Navigation