Skip to main content
Log in

Vortex formation and foraging in polyphenic spadefoot toad tadpoles

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Animal aggregations are widespread in nature and can exhibit complex emergent properties not found at an individual level. We investigate one such example here, collective vortex formation by congeneric spadefoot toad tadpoles: Spea bombifrons and Spea multiplicata. Tadpoles of these species develop into either an omnivorous or a carnivorous (cannibalistic) morph depending on diet. Previous studies show that S. multiplicata are more likely to develop into omnivores and feed on suspended organic matter in the water body. The omnivorous morph is frequently social, forming aggregates that move and forage together and form vortices in which they adopt a distinctive slowly rotating circular formation. This behaviour has been speculated to act as a means to agitate the substratum in ponds and thus could be a collective foraging strategy. Here we perform a quantitative investigation of the behaviour of tadpoles within aggregates. We found that only S. multiplicata groups exhibited vortex formation, suggesting that social interactions differ between species. The probability of collectively forming a vortex, in response to introduced food particles, increased for higher tadpole densities and when tadpoles were hungry. Individuals inside a vortex moved faster and exhibited higher (by approximately 27%) tailbeat frequencies than those outside the vortex, thus incurring a personal energetic cost. The resulting environmental modification, however, suggests that vortex behaviour may be an adaptation to actively create and exploit a resource patch within the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Arendt JD (2009) Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata). Behav Ecol 159:455–461

    Google Scholar 

  • Arendt JD (2010) Morphological correlates of sprint swimming speed in five species of spadefoot toad tadpoles: comparison of morphometric methods. J Morphol 271:1044–1052

    Article  PubMed  Google Scholar 

  • Arendt JD, Hoang L (2005) Effect of food level and rearing temperature on burst speed and muscle composition of western spadefoot toad (Spea hammondii). Funct Ecol 19:982–987

    Article  Google Scholar 

  • Bainbridge R (1958) The speed of swimming of fish as related to size and to the frequency and the amplitude of the tail beat. J Exp Biol 35:109–133

    Google Scholar 

  • Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astynax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Bazazi S, Romanczuk P, Thomas S, Schimansky-Geier L, Hale JJ, Miller GA, Sword GA, Simpson SJ, Couzin ID (2011) Nutritional state and collective motion: from individuals to mass migration. Proc R Soc B-Biol Sci 278(1704):356–363. doi:10.1098/rspb.2010.1447

    Article  Google Scholar 

  • Beauchamp G (1998) The effect of group size on mean food intake rate in birds. Biol Rev 73(4):449–472

    Article  Google Scholar 

  • Beauchamp G, Giraldeau L-A (1996) Group foraging revisited: information sharing or producer–scrounger game? Am Nat 148(4):738–743

    Article  Google Scholar 

  • Beauchamp G, Giraldeau L-A (1997) Patch exploitation in a producer–scrounger system: test of a hypothesis using flocks of spice finches (Lonchura punctulata). Behav Ecol 8(1):54–59

    Article  Google Scholar 

  • Beiswenger RE (1975) Structure and function in aggregations of tadpoles of the American toad, Bufo americanus. Herpetologica 31:222–233

    Google Scholar 

  • Beiswenger RE (1977) Diel patterns of aggregative behavior in tadpoles of Bufo americanus, in relation to light and temperature. Ecology 58:98–108

    Article  Google Scholar 

  • Bertram B (1975) Social factors influencing reproduction in wild lions. J Zool 177:463–482

    Article  Google Scholar 

  • Biewener AA (2003) Animal locomotion. Oxford University Press, Oxford

    Google Scholar 

  • Bonabeau E (1998) Social insect colonies as complex adaptive systems. Ecosystems 1:437–443

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Franks NR, Rafelsberger O, Joly JL, Blanco S (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Philos Trans R Soc Lond B 353:1561–1576

    Article  Google Scholar 

  • Bragg AN (1965) Gnomes of the night: the spadefoot toads. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Couzin ID (2007) Collective minds. Nature 445:715

    Article  PubMed  CAS  Google Scholar 

  • Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13(1):36–43

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J (2003) Self-organization and collective behaviour of vertebrates. Adv Stud Behav 32:1–75

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision making in animal groups on the move. Nature 433:513–516

    Article  PubMed  CAS  Google Scholar 

  • Creel S, Creel NM (1995) Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim Behav 50:1325–1339

    Article  Google Scholar 

  • Dall SRX (2005) Defining the concept of public information. Science 308:353–354

    Article  PubMed  CAS  Google Scholar 

  • Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  PubMed  CAS  Google Scholar 

  • Daniel TL, Webb PW (1987) Physical determinants of locomotion. In: Dejours P, Bolis L, Taylor CR, Weibel ER (eds) Comparative physiology: life in water and on land. Liviana, New York, pp 343–369

    Google Scholar 

  • Deneubourg J-L, Goss S, Franks NR, Pasteels JM (1989) The blind leading the blind: modelling chemically mediated army ant raid patterns. J Insect Behav 2:719–725

    Article  Google Scholar 

  • Duellman WE, Lescure J (1973) Life history and ecology of the hylid frog Osteocephalus taurinus, with observations on larval behavior. In: Occasional Papers of the Museum of Natural History, vol 13. University of Kansas, pp 1–12

  • Duellman WE, Trueb L (1994) Biology of amphibians. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Foster MS, McDiarmid RW (1982) Study of aggregative behaviour of Rhinophrynus dorsalis tadpoles: design and analysis. Herpetologica 38(3):395–404

    Google Scholar 

  • Franks NR, Partridge LW (1993) Lanchester battles and the evolution of combat in ants. Anim Behav 45:197–199

    Article  Google Scholar 

  • Franks NR, Gomez N, Goss S, Deneubourg J-L (1991) The blind leading the blind in army ant raid patterns: testing a model of self-organisation (Hymenoptera: Formicidae). J Insect Behav 4:583–607

    Article  Google Scholar 

  • Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Gotwald WH (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Hansell M (2005) Animal architecture. Oxford University Press, Oxford

    Book  Google Scholar 

  • Helbing D, Keltsch J, Molnár P (1997a) Modelling the evolution of human trail systems. Nature 388:47–50

    Article  PubMed  CAS  Google Scholar 

  • Helbing D, Schweitzer F, Keltsch J, Molnár P (1997b) Active walker model for the formation of human and animal trail systems. Phys Rev E 56:2527–2539

    Article  CAS  Google Scholar 

  • Hunter JR, Zweifel JR (1971) Swimming speed, tail beat frequency, tail beat amplitude, and size in jack mackerel, Trachurus symmetricus, and other fishes. Fish B-NOAA 69:253–266

    Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–70

    Article  PubMed  Google Scholar 

  • Katz LC, Potel MJ, Wassersug RJ (1981) Structure and mechanisms of schooling in tadpoles of the clawed frog, Xenopus laevis. Anim Behav 29:20–23

    Article  Google Scholar 

  • King AJ, Isaac NJB, Cowlishaw G (2009) Ecological, social, and reproductive factors shape producer–scrounger dynamics in baboons. Behav Ecol 20(5):1039–1049

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • McDiarmid RW, Altig R (1999) Tadpoles: the biology of Anuran larvae. Chicago University Press, Chicago

    Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Ordemann A, Balázsi G, Caspari E, Moss F (2003) Daphnia swarms: from single agent dynamics to collective vortex formation. P SPIE-IS&T ELECT IM 5110:172–179

    Article  Google Scholar 

  • Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregations. Science 284:99–101

    Article  PubMed  CAS  Google Scholar 

  • Petranka JW, Hayes L (1998) Chemically mediated avoidance of a predatory odonate (Anax junius) by American toad (Bufo americanus) and wood frog (Rana sylvatica) tadpoles. Behav Ecol Sociobiol 42:263–271

    Article  Google Scholar 

  • Pfennig DW (1990a) “Kin recognition” among spadefoot toad tadpoles: a side-effect of habitat selection? Evolution 44(4):785–798

    Article  Google Scholar 

  • Pfennig DW (1990b) The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia (Berl) 85:101–107

    Article  Google Scholar 

  • Pfennig DW (1992) Proximate and functional causes of polyphenism in an anuran tadpole. Funct Ecol 6:167–174

    Article  Google Scholar 

  • Pfennig DW, Murphy PJ (2000) Character displacement in polyphenic tadpoles. Evolution 54:1738–1749

    PubMed  CAS  Google Scholar 

  • Pfennig DW, Mabry A, Orange D (1991) Environmental causes of correlations between age and size at metamorphosis in Scaphiopus multiplicata. Ecology 72(6):2240–2248

    Article  Google Scholar 

  • Pfennig DW, Reeve HK, Sherman PW (1993) Kin recognition and cannibalism in spadefoot toad tadpoles. Anim Behav 46:87–94

    Article  Google Scholar 

  • Pfennig KS, Chunco AJ, Lackey ACR (2007) Ecological selection and hybrid fitness: hybrids succeed on parental resources. Evol Ecol Res 9:341–354

    Google Scholar 

  • Pomeroy LV (1981) Developmental polymorphism in the tadpoles of the spadefoot toad, Scaphiopus multiplicatus. University of California, Riverside

    Google Scholar 

  • Powell GVN (1974) Experimental analysis of the social value of flocking by starlings (Sturnus vulgaris) in relation to predation and foraging. Anim Behav 22:501–505

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (1998) Particle image velocimetry. Springer, Berlin

    Google Scholar 

  • Richmond ND (1947) Life history of Scaphiopus holbrooki holbrooki (Harlan). Part I. Larval development and behavior. Ecology 28:53–67

    Article  Google Scholar 

  • Robertson DR, Sweatman HPA, Fletcher EA, Cleland MG (1976) Schooling as a mechanism for circumventing the territoriality of competitors. Ecology 57:1208–1220

    Article  Google Scholar 

  • Roche JP (1993) The benefits of kin recognition in tadpoles: a review of the literature. Maine Nat 1(2):13–20

    Article  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, Berlin

    Google Scholar 

  • Schmidt RJ, Strand SW (1982) Cooperative foraging by yellowtail, Seriola lalandei (Carangidae) on two species of fish prey. Copeia 1982:714–717

    Article  Google Scholar 

  • Schmidt-Nielsen K (1975) Scaling in biology: the consequences of size. J Exp Zool 194(1):287–307

    Article  PubMed  CAS  Google Scholar 

  • Schneirla TC (1971) Army ants: a study in social organisation. Freeman, San Francisco

    Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Simmons AM, Costa LM, Gerstein HB (2004) Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis). J Comp Physiol A 190(9):747–758

    Article  Google Scholar 

  • Skelly D, Werner E (1990) Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology 71:2313–2322

    Article  Google Scholar 

  • Sokolov A, Apodacac MM, Grzybowskic BA, Aransona IS (2009) Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 107(3):969–974

    Article  PubMed  Google Scholar 

  • Sontag C, Sloan Wilson D, Wilcox RS (2006) Social foraging in Bufo americanus tadpoles. Anim Behav 72:1451–1456

    Article  Google Scholar 

  • Stuart LC (1961) Some observations on the natural history of tadpoles of Rhinophrynus dorsalis Dumeril and Bibron. Herpetologica 17:73–79

    Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behaviour. Philos Trans R Soc Lond B 361:5–22

    Article  CAS  Google Scholar 

  • Templeton JJ, Giraldeau L-A (1995) Patch assessment in foraging flocks of European starlings: evidence for the use of public information. Behav Ecol 6:65–72

    Article  Google Scholar 

  • Torney CJ, Neufeld Z, Couzin ID (2009) Context-dependent interaction leads to emergent search behavior in social aggregates. Proc Natl Acad Sci USA 106(52):22055–22060

    Article  PubMed  CAS  Google Scholar 

  • Vickery WL, Giraldeau L-A, Templeton JJ, Kramer DL, Chapman CA (1991) Producers, scroungers and group foraging. Am Nat 137(6):847–863

    Article  Google Scholar 

  • Vogel S (2008) Modes and scaling in aquatic locomotion. Integr Comp Biol 48(6):702–712

    Article  PubMed  Google Scholar 

  • Waldman B (1991) Kin recognition in amphibians. In: Hepper PG (ed) Kin recognition. Cambridge University Press, Cambridge, pp 162–219

    Google Scholar 

  • Wassersug RJ (1973) Aspects of social behavior of anuran larvae. In: Vial JL (ed) Evolutionary biology of the anurans: contemporary research on major problems. University of Missouri Press, Columbia, pp 273–297

    Google Scholar 

  • Wassersug RJ, Hoff K (1985) The kinematics of swimming in anuran larvae. J Exp Biol 119:1–30

    Google Scholar 

  • Wells KD (2007) The ecology and behaviour of amphibians. Chicago University Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Natural Environment Research Council (S.B.), Searle Scholars Award 08-SPP-201 (I.D.C.), National Science Foundation Awards PHY-0848755 (I.D.C.) and DEB-0542566 (K.S.P), Office of Naval Research Award N00014-09-1-1074 (I.D.C.) and a DARPA grant no. HR0011-09-1-0055 (to Princeton University). The authors also thank Laura Exline for help with the breeding of toads and laboratory assistance and Vishwesha Guttal, Arne Holmin, Christos Ioannou, Simon LeBlanc, Ryan Martin, Graham Taylor and Colin Torney for helpful discussions.

Ethical standards

The authors declared that all procedures were carried out in accordance with federal and state regulations and were approved by the University of North Carolina at Chapel Hill’s Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Bazazi.

Additional information

Communicated by J. Krause

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazazi, S., Pfennig, K.S., Handegard, N.O. et al. Vortex formation and foraging in polyphenic spadefoot toad tadpoles. Behav Ecol Sociobiol 66, 879–889 (2012). https://doi.org/10.1007/s00265-012-1336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1336-1

Keywords

Navigation