Behavioral Ecology and Sociobiology

, Volume 66, Issue 3, pp 475–486 | Cite as

How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction

  • Kirsten Kreuter
  • Elfi Bunk
  • Anna Lückemeyer
  • Robert Twele
  • Wittko Francke
  • Manfred Ayasse
Original Paper


Social parasitism is widespread in many groups of social living hymenopteran species and has also evolved in the genus Bombus. Cuckoo bumblebees (subgenus Psithyrus) are obligate brood parasites in nests of other bumblebee species. After nest usurpation and the killing of the host queen, the parasite female has to control worker reproduction in order to accomplish and maintain reproductive dominance and to ensure her reproductive success. The aim of our study was to examine whether the generalist parasitic bumblebee Bombus bohemicus monopolizes and prevents worker reproduction by physical or chemical means and to identify possible odor compounds involved therein. We performed bioassays with callow workers of the host Bombus terrestris and have shown that B. bohemicus females are able to suppress host worker ovarian development, when these host workers are under the direct influence of the parasite female. Furthermore, by chemical analyses, we have demonstrated that the parasite females adjust to the odor profiles of their host queens in order to maintain the level of fertility signaling inside the host colony although the host queen is absent. We also found that host workers change their odor profile after nest usurpation by the parasite female and consequently, we suggest that the host and parasite are caught up in a chemical arms race.


Social parasitism Regulation of reproduction Ovarian development Chemical mimicry Fertility signals Bombus terrestris Bombus bohemicus 



We thank the German Science Foundation for financial support (AY 12/2-1; AY 12/2-2; FR 507 17/1). Additionally, we thank Theresa Jones for linguistic advice, Mirjam Knörnschild for statistic advice, Stefan Jarau for critical reading of the manuscript and helpful comments, and Madeleine Beekman and three anonymous reviewers for suggestions on an earlier version of the manuscript.

Ethical standards

The experiments performed comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426CrossRefGoogle Scholar
  2. Ayasse M, Marlovits T, Tengö J, Taghizadeh T, Francke W (1995) Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L (Hymenoptera, Apidae). Apidologie 26:163–180CrossRefGoogle Scholar
  3. Benton T (2006) Bumblebees. Harper Collins, LondonGoogle Scholar
  4. Breed MD, Diaz PH, Lucero KD (2004) Olfactory information processing in honeybee, Apis mellifera, nestmate recognition. Anim Behav 68:921–928CrossRefGoogle Scholar
  5. Bunk E, Sramkova A, Ayasse M (2010) The role of trail pheromones in host nest recognition of the social parasitic bumblebees Bombus bohemicus and Bombus rupestris (Hymenoptera: Apidae). Chemoecology 20:189–198CrossRefGoogle Scholar
  6. Buschinger A (1986) Evolution of social parasitism in ants. Trends Ecol Evol 1:155–160PubMedCrossRefGoogle Scholar
  7. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in monosaturates acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822CrossRefGoogle Scholar
  8. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E Ltd., PlymouthGoogle Scholar
  9. D’Ettore P, Mondy N, Lenoir A, Errard C (2002) Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc R Soc Lond B 269:1911–1918CrossRefGoogle Scholar
  10. Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489PubMedCrossRefGoogle Scholar
  11. Davies NB, Bourke AFG, Brooke ML (1989) Cuckoos and parasitic ants: interspecific brood parasitism as an evolutionary arms race. Trends Ecol Evol 4:274–278PubMedCrossRefGoogle Scholar
  12. Dronnet S, Simon X, Verhaeghe JC, Rasmont P, Errard C (2005) Bumblebee inquilinism in Bombus (Fernaldaepsithyrus) sylvestris (Hymenoptera: Apidae): behavioural and chemical analyses of host–parasite interactions. Apidologie 36:59–70CrossRefGoogle Scholar
  13. Duchateau MJ, Velthuis HHW (1989) Ovarian development and egg laying in workers of Bombus terrestris. Entomol Exp Appl 51:199–213CrossRefGoogle Scholar
  14. Fisher RM (1983) Inability of the social parasite Psithyrus ashtoni to suppress ovarian development in workers of Bombus affinis (Hymenoptera: Apidae). J Kans Entomol Soc 56:69–73Google Scholar
  15. Free JB (1987) Pheromones of social bees. Cornell University Press, New YorkGoogle Scholar
  16. Gamboa GJ, Klahn JE, Parman AO, Ryan RE (1987) Discrimination between nestmate and non-nestmate kin by social wasps (Polistes fuscatus, Hymenoptera: Vespidae). Behav Ecol Sociobiol 21:125–128CrossRefGoogle Scholar
  17. Goulson D (2003) Bumblebees: behaviour, ecology and conservation. Oxford University Press, OxfordGoogle Scholar
  18. Heinze J, Schrempf A (2008) Aging and reproduction in social insects—a mini-review. Gerontology 54:160–167PubMedCrossRefGoogle Scholar
  19. Heinze J, Stengl B, Sledge MF (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inverse. Behav Ecol Sociobiol 52:59–65CrossRefGoogle Scholar
  20. Hölldobler B, Wilson EO (1990) The ants. Springer Verlag, BerlinGoogle Scholar
  21. Hoover SER, Oldroyd BP, Wossler TC, Winston ML (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480PubMedCrossRefGoogle Scholar
  22. Howard RW, Blomquist GJ (2005) Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–391PubMedCrossRefGoogle Scholar
  23. Izzo A, Wells M, Huang Z, Tibbetts E (2010) Cuticular hydrocarbons correlate with fertility, not dominance, in a paper wasp, Polistes dominulus. Behav Ecol Sociobiol 64:857–864CrossRefGoogle Scholar
  24. Kearns CA, Thomson JD (2001) The natural history of bumblebees: a sourcebook for investigations. University Press of Colorado, ColoradoGoogle Scholar
  25. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794CrossRefGoogle Scholar
  26. Küpper G, Schwammberger KH (1995) Social parasitism in bumble bees (Hymenoptera: Apidae): observations of Psithyrus sylvestris in Bombus pratorum nests. Apidologie 26:245–254CrossRefGoogle Scholar
  27. Lambardi D, Dani FR, Turillazzi S, Boomsma JJ (2007) Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav Ecol Sociobiol 61:843–851CrossRefGoogle Scholar
  28. Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Ann Rev Entomol 53:523–542CrossRefGoogle Scholar
  29. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedCrossRefGoogle Scholar
  30. Liebig J, Peeters C, Oldham NJ, Markstädter C, Hölldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci USA 97:4124–4131PubMedCrossRefGoogle Scholar
  31. Lorenzi MC, Cometto I, Marchisio G (1999) Species and colony components in the recognition dodr of young social wasps: their expression and learning (Polistes biglumis and P. atrimandibularis; Hymenoptera: Vespidae). J Insect Behav 12:147–158CrossRefGoogle Scholar
  32. Lückemeyer A (2009) The role of chemical communication in the reproductive biology of bumblebees and cuckoo bumblebees. Dissertation, University of UlmGoogle Scholar
  33. Martin SJ, Takahashi J, Ono M, Drijfhout FP (2008) Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted? J Insect Physiol 54:700–707PubMedCrossRefGoogle Scholar
  34. Martin SJ, Carruthers JM, Williams PH, Drijfhout FP (2010) Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J Chem Ecol 36:855–863PubMedCrossRefGoogle Scholar
  35. Michener CD (1974) The social behavior of the bees. Harvard University Press, CambridgeGoogle Scholar
  36. Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In: Hughes DP (ed) Sociobiology of communication: an interdisciplinary perspective. Oxford University Press, USA, pp 55–79Google Scholar
  37. Pouvreau A (1996) Le marque de l’entrée du nid de bourdons. Entomol Exp Appl 80:355–364CrossRefGoogle Scholar
  38. Ratnieks FLW, Helanterä H (2009) The evolution of extreme altruism and inequality in insect societies. Phil Trans R Soc B 364:3169–3179PubMedCrossRefGoogle Scholar
  39. Röseler PF (1985) A technique for year-round rearing of Bombus terrestris (Apidae, Bombini) colonies in captivity. Apidologie 16:165–170CrossRefGoogle Scholar
  40. Röseler PF, Van Honk C (1990) Castes and reproduction in bumblebees. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer Verlag, Berlin, pp 147–166Google Scholar
  41. Röseler PF, Röseler I, van Honk CGJ (1981) Evidence for inhibition of corpora allata activity in workers of Bombus terrestris by a pheromone from the queen’s mandibular glands. Experientia 37:348–351CrossRefGoogle Scholar
  42. Sladen FWL (1912) The humblebee, its life history and how to domesticate it. Macmillan, LondonGoogle Scholar
  43. Sledge MF, Boscaro F, Turillazzi S (2001) Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav Ecol Sociobiol 49:401–409CrossRefGoogle Scholar
  44. Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–2745PubMedCrossRefGoogle Scholar
  45. Smith BH, Breed MD (1995) The chemical basis for nestmate recognition and mate discrimination in social insects. In: Cardé RT, Bell WJ (eds) Chemical Ecology of Insects 2. Chapman & Hall, New York, pp 287–317Google Scholar
  46. Sramkova A, Ayasse M (2009) Chemical ecology involved in invasion success of the cuckoo bumblebee Psithyrus vestalis and in survival of workers of its host Bombus terrestris. Chemoecology 19:55–62CrossRefGoogle Scholar
  47. Sramkova A, Schulz C, Twele R, Francke W, Ayasse M (2008) Fertility signals in the bumblebee Bombus terrestris (Hymenoptera: Apidae). Naturwissenschaften 95:515–522PubMedCrossRefGoogle Scholar
  48. Strauss K, Scharpenberg H, Crewe RM, Glahn F, Foth H, Moritz RFA (2008) The role of the queen mandibular gland pheromone in honeybees (Apis mellifera): hones signal or suppressive agent? Behav Ecol Sociobiol 62:1523–1531CrossRefGoogle Scholar
  49. Strohm E, Kroiss J, Herzner G, Laurien-Kehnen C, Boland W, Schreier P, Schmitt T (2008) A cuckoo in wolves’ clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Front Zool 5:2PubMedCrossRefGoogle Scholar
  50. Van Doorn A (1988) Reproductive dominance in bumblebees: an etho-physiological study. Dissertation, Universtiy of UtrechtGoogle Scholar
  51. Van Honk CGJ, Velthuis HHW, Röseler PF, Malotaux ME (1980) The mandibular glands of Bombus terrestris queens as a source of queen pheromones. Entomol Exp Appl 28:191–198CrossRefGoogle Scholar
  52. Van Honk CGJ, Röseler PF, Velthuis HHW, Malotaux M (1981) The conquest of a Bombus terrestris colony by a Psithyrus vestalis female. Apidologie 12:57–67CrossRefGoogle Scholar
  53. Vergara CH, Schröder S, Almanza MT, Wittmann D (2003) Suppression of ovarian development of Bombus terrestris workers by B. terrestris queens, Psithyrus vestalis and Psithyrus bohemicus females. Apidologie 34:563–568CrossRefGoogle Scholar
  54. Williams PH (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull nat Hist Mus Lond (Ent) 67:79–152Google Scholar
  55. Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Zimma BO, Ayasse M, Tengö J, Ibarra F, Schulz C, Francke W (2003) Do social parasitic bumblebees use chemical weapons? J Comp Physiol 189:769–775CrossRefGoogle Scholar
  57. Zimma BO, Ayasse M, Tengö J, Ibarra F, Francke W (2004) The role of semiochemicals in the reproductive biology of parasitic bumblebees. Mitt dtsch Ges allg angew Ent 14:195–198Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kirsten Kreuter
    • 1
  • Elfi Bunk
    • 1
  • Anna Lückemeyer
    • 1
  • Robert Twele
    • 2
  • Wittko Francke
    • 2
  • Manfred Ayasse
    • 1
    • 3
  1. 1.Institute of Experimental Ecology, Department of Chemical EcologyUniversity of UlmUlmGermany
  2. 2.Institute of Organic Chemistry, University of HamburgHamburgGermany
  3. 3.Department of Chemical EcologyUniversity of UlmUlmGermany

Personalised recommendations