Multiple mating opportunities boost protandry in a pied flycatcher population

Abstract

Protandry, the earlier arrival of males than females to breeding areas, is widespread in birds, but its underlying mechanisms are far from well understood. The two, not mutually exclusive most highly supported hypotheses to explain avian protandry postulate that it has evolved from intrasexual male competition to acquire the best territories (“rank advantage” hypothesis) and/or to maximize the number of mates (“mate opportunity” hypothesis). We studied for two consecutive years the relative importance of both hypotheses in a population of pied flycatchers (Ficedula hypoleuca), a territorial songbird with a mixed mating strategy. We measured territory quality using a long-term dataset on nest occupation and breeding output, and we used molecular techniques to assess male fitness across the range of social and genetic mating options. Territory quality was unrelated to breeding date and had no influence on extra-pair paternity or social polygynous events. However, males breeding early increased their chances of becoming socially polygynous and/or of attaining extra-pair paternity and, as a consequence, increased their total reproductive success. These results support the “mate opportunity” hypothesis, suggesting that sexual selection is the main mechanism driving protandry in this population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alatalo RV, Lundberg A, Glynn C (1986) Female pied flycatchers choose territory quality and not male characteristics. Nature 323:152–153

    Article  Google Scholar 

  2. Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  3. Arvidsson BL, Neergaard R (1991) Mate choice in the willow warbler: a field experiment. Behav Ecol Sociobiol 29:225–229

    Article  Google Scholar 

  4. Askenmo CEH (1984) Polygyny and nest site selection in pied flycatcher. Anim Behav 32:972–980

    Article  Google Scholar 

  5. Bêty J, Gauthier G, Giroux J-F (2003) Body condition, migration, and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Am Nat 162:110–121

    PubMed  Article  Google Scholar 

  6. Birkhead TR (1998) Sperm competition in birds. Rev Reprod 3:123–129

    PubMed  Article  CAS  Google Scholar 

  7. Birkhead TR, Møller AP (1992) Sperm competition in birds: evolutionary causes and consequences. London Academic Press.

  8. Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. London: Academic Press

  9. Bitton P-P, O’Brien EL, Dawson RD (2007) Plumage brightness and age predict male extra-pair fertilization success in tree swallows Tachycineta bicolor. Anim Behav 74:1777–1784

    Article  Google Scholar 

  10. Brown CR, Brown MB (2000) Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav Ecol Sociobiol 47:339–345

    Article  Google Scholar 

  11. Canal D, Dávila JA, de Nova PJC, Ferrero E, Potti J (2009) Polymorphic microsatellite markers isolated from a southern European population of pied flycatcher (Ficedula hypoleuca iberiae). Mol Ecol Res 9:1375–1379

    Article  Google Scholar 

  12. Canal D, Potti J, Dávila JA (2011) Male phenotype predicts extra pair paternity in pied flycatchers. Behaviour 148:691–712

    Article  Google Scholar 

  13. Carvalho MC, Queiroz PCD, Ruszczyk A (1998) Protandry and female size-fecundity variation in the tropical butterfly Brassolis sophorae. Oecologia 116:98–102

    Article  Google Scholar 

  14. Crecco VA, Savoy TF (1985) Effects of biotic and abiotic factors on growth and relative survival of young American shad, Alosa sapidissima, in the Connecticut River. Can J Fish Aquat Sci 42:1640–1648

    Article  Google Scholar 

  15. Coppack T, Tottrup AP, Spottiswoode C (2006) Degree of protandry reflects level of extrapair paternity in migratory songbirds. J Ornithol 147:260–265

    Article  Google Scholar 

  16. Cooper NW, Murphy MT, Redmond LJ (2009) Age- and sex-dependent spring arrival dates of Eastern Kingbirds. J Field Ornithol 80:35–41

    Article  Google Scholar 

  17. Cordero PJ, Wetton JH, Parkin DT (1999) Extra-pair paternity and male badge size in the house sparrow. J Avian Biol 30:97–102

    Article  Google Scholar 

  18. Ellegren H (1992) Polymerase-chain-reaction (PCR) analysis of microsatellites—a new approach to studies of genetic relationships in birds. Auk 109:886–895

    Google Scholar 

  19. Fishman MA, Stone L, Lotem A (2003) Fertility assurance through extrapair fertilizations and male paternity defense. J Theor Biol 221:103–114

    PubMed  Article  Google Scholar 

  20. Forstmeier W (2002) Benefits of early arrival at breeding grounds vary between males. J Anim Ecol 71:1–9

    Article  Google Scholar 

  21. Griffith SC, Owens IPF, Thuman AK (2002) Extra-pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    PubMed  Article  CAS  Google Scholar 

  22. Hasselquist D (1998) Polygyny in great reed warblers: a long-term study of factors contributing to male fitness. Ecology 53:938–946

    Google Scholar 

  23. Hastings J (1989) Protandry in western cicada killer wasps, (Sphecius grandis, Hymenoptera: Sphecidae): an empirical study of emergence time and mating opportunity. Behav Ecol Sociobiol 25:255–260

    Article  Google Scholar 

  24. Holzapfel CM, Bradshaw WE (2002) Protandry: the relationship between emergence time and male fitness in the pitcher-plant mosquito. Ecology 83:607–611

    Article  Google Scholar 

  25. Huk T, Winkel W (2008) Testing the sexy son hypothesis. A research framework for empirical approaches. Behav Ecol 19:456–461

    Article  Google Scholar 

  26. Jonzén N, Hedenström A, Lundberg P (2007) Climate change and the optimal arrival of migratory birds. Proc R Soc B 274:269–274

    PubMed  Article  Google Scholar 

  27. Kempenaers B, Geert R, Dhondt A (1997) Extrapair paternity in the blue tit (Parus caeruleus): female choice, male characteristics, and offspring quality. Behav Ecol 8:481–492

    Article  Google Scholar 

  28. Ketterson ED, Nolan VJ (1976) Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57:679–693

    Article  Google Scholar 

  29. Kissner KJ, Weatherhead PJ, Francis CM (2003) Sexual size dimorphism and timing of spring migration in birds. J Evol Biol 16:154–162

    PubMed  Article  CAS  Google Scholar 

  30. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950

    Article  Google Scholar 

  31. Kokko H, Gunnarsson TG, Morrell LJ, Gill JA (2006) Why do female migratory birds arrive later than males? J Anim Ecol 75:1293–1303

    PubMed  Article  Google Scholar 

  32. Kleckner CA, Hawley WA, Bradshaw WE, Holzapfel CM, Fisher IJ (1995) Protandry in Aedes sierrensis: the significance of temporal variation in female fecundity. Ecology 76:1242–1250

    Article  Google Scholar 

  33. Langefors A, Hasselquist D, von Schantz T (1998) Extra-pair fertilizations in the sedge warbler. J Avian Biol 29:134–144

    Article  Google Scholar 

  34. Leder EH, Karaiskou N, Primmer CR (2008) Seventy new microsatellites for the pied flycatcher, Ficedula hypoleuca and amplification in other passerine birds. Mol Ecol Res 8:874–880

    Article  CAS  Google Scholar 

  35. Lifjeld JT, Slagsvold T (1988) Female pied flycatchers Ficedula hypoleuca choose male characteristics in homogeneous habitats. Behav Ecol Sociobiol 22:27–36

    Article  Google Scholar 

  36. Lifjeld JT, Slagsvold T, Ellegren H (1997) Experimental mate switching in pied flycatchers: male copulatory access and fertilization success. Anim Behav 53:1225–1232

    PubMed  Article  Google Scholar 

  37. Ligon JD (1999) The evolution of avian breeding systems. Oxford ornithology series. Oxford University Press, New York

    Google Scholar 

  38. Lozano GA (1994) Size, condition, and territory ownership in male tree swallows (Tachycineta bicolor). Can J Zool 72:330–333

    Article  Google Scholar 

  39. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American redstarts Setophaga ruticilla. J Avian Biol 27:164–170

    Article  Google Scholar 

  40. Lundberg A, Alatalo RV (1992) The pied flycatcher. Poyser, London

    Google Scholar 

  41. Michl G, Török J, Griffith SC, Sheldon BC (2002) Experimental analysis of sperm competition mechanisms in a wild bird population. Proc Natl Acad Sci USA 99:5466–5470

    PubMed  Article  CAS  Google Scholar 

  42. Møller AP (1994) Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol 35:115–122

    Article  Google Scholar 

  43. Møller AP (2004) Protandry, sexual selection and climate change. Glob Change Biol 10:2028–2035

    Article  Google Scholar 

  44. Møller AP, Brohede J, Cuervo JJ, de Lope F, Primmer C (2003) Extrapair paternity in relation to sexual ornamentation, arrival date and condition in a migratory bird. Behav Ecol 14:707–712

    Article  Google Scholar 

  45. Møller AP, Balbontín J, Cuervo JJ, Hermosell IG, de Lope F (2009) Individual differences in protandry, sexual selection, and fitness. Behav Ecol 20:433–440

    Article  Google Scholar 

  46. Morbey Y (2000) Protandry in Pacific salmon. Can J Fish Aquat Sci 57:1252–1257

    Article  Google Scholar 

  47. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673

    Article  Google Scholar 

  48. Morton ML, Sherman PW (1978) Effects of a spring snowstorm on behavior, reproduction, and survival of Belding’s ground squirrels. Can J Zool 56:2578–2590

    Article  Google Scholar 

  49. Myers JP (1981) A test of three hypotheses for latitudinal segregation of the sexes in wintering birds. Can J Zool 59:1527–1534

    Article  Google Scholar 

  50. Neto JM, Hansson B, Hasselquist D (2010) Low frequency of extra-pair paternity in Savi’s warblers (Locustella luscinioides). Behaviour 147:1413–1429

    Article  Google Scholar 

  51. Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Article  Google Scholar 

  52. Newton I (2008) The ecology of bird migration. Academic Press, London

    Google Scholar 

  53. Olsson M, Madsen T (1996) Costs of mating with infertile males selects for late emergence in female sand lizards. Copeia 2:462–464

    Article  Google Scholar 

  54. Potti J, Montalvo S (1991) Male arrival and female mate choice in Pied Flycatchers (Ficedula hypoleuca) in central Spain. Ornis Scand 22:45–54

    Article  Google Scholar 

  55. Potti J, Blanco G, Lemus JÁ, Canal D (2007) Infectious offspring: how birds acquire and transmit an avian polyomavirus in the wild. PLoS One 2(12):e1276. doi:101371/journalpone0001276

    PubMed  Article  Google Scholar 

  56. Primmer G, Anders M, Ellegren H (1996) New microsatellites from the pied flycatcher Ficedula hypoleuca and the swallow Hirundo rustica genomes. Hereditas 124:281–283

    PubMed  Article  CAS  Google Scholar 

  57. Rätti O, Lundberg A, Tegelström H, Alatalo RV (2001) No evidence for effects of breeding density and male removal on extrapair paternity in the pied flycatcher. Auk 118:147–155

    Article  Google Scholar 

  58. Reudink MW, Marra PP, Kyser TK, Boag PT, Langin KM, Ratcliffe LM (2009) Non-breeding season events influence sexual selection in a long-distance migratory bird. Proc R Soc B 276:1619–1626. doi:10.1098/rspb.2008.1452

    PubMed  Article  Google Scholar 

  59. Reynolds JD, Colwell MA, Cooke F (1986) Sexual selection and spring arrival times of red-necked and Wilson’s phalaropes. Behav Ecol Sociobiol 18:303–310

    Article  Google Scholar 

  60. Rubolini D, Spina F, Saino N (2004) Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol 15:592–601

    Article  Google Scholar 

  61. Saino N, Rubolini D, Serra L, Caprioli M, Morganti M, Ambrosini R, Spina F (2010) Sex-related variation in migration phenology in relation to sexual dimorphism: a test of competing hypotheses for the evolution of protandry. J Evol Biol 23:2054–2065. doi:10.1111/j.1420-9101.2010.02068

    PubMed  Article  CAS  Google Scholar 

  62. Sanz JJ (2001) Experimentally reduced male attractiveness increases parental care in the pied flycatcher Ficedula hypoleuca. Behav Ecol 12:171–176

    Article  Google Scholar 

  63. Sergio F, Newton I (2003) Occupancy as a measure of territory quality. J Anim Ecol 72:857–865

    Article  Google Scholar 

  64. Sirkiä PM, Laaksonen T (2009) Distinguishing between male and territory quality: females choose multiple traits in the pied flycatcher. Anim Behav 78:1051–1060

    Article  Google Scholar 

  65. Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239

    Article  Google Scholar 

  66. Spottiswoode C, Tøttrup AP, Coppack T (2006) Sexual selection predicts advancement of avian spring migration in response to climate change. Proc R Soc B 273:3023–3029

    PubMed  Article  Google Scholar 

  67. Tennessen JA, Zamudio KR (2003) Early-male reproductive advantage, multiple paternity, and sperm storage in an amphibian aggregate breeder. Mol Ecol 12:1567–1576

    PubMed  Article  CAS  Google Scholar 

  68. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge

    Google Scholar 

  69. Weatherhead PJ, Boag PT (1995) Pair and extra-pair mating success relative to male quality in red-winged blackbirds. Behav Ecol Sociobiol 37:81–91

    Article  Google Scholar 

  70. Weatherhead PJ, Robertson RJ (1979) Offspring quality and the polygyny threshold: “the sexy son hypothesis”. Am Nat 11:201–208

    Article  Google Scholar 

  71. Webster MS, Tarvin KA, Tuttle EM, Pruett-Jones S (2007) Promiscuity drives sexual selection in a socially monogamous bird. Evolution 61:2205–2211

    PubMed  Article  Google Scholar 

  72. Westneat DF, Stewart IRK (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Annu Rev Ecol Evol Syst 34:365–396

    Article  Google Scholar 

  73. Wiklund C, Fagerström T (1977) Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31:153–158

    Article  Google Scholar 

  74. Wiklund C, Solbreck C (1982) Adaptive versus incidental explanations for the occurrence of protandry in a butterfly Heptidea sinapis L. Evolution 36:56–62

    Article  Google Scholar 

Download references

Acknowledgements

We thank Inés Valencia and Carlos Camacho for their dedicated assistance in the field and Airam Rodriguez for the valuable and long discussions on statistics and behavior. F. Stephen Dobson and an anonymous reviewer commented constructively on a first draft of the paper. Consejería de Medio Ambiente, Comunidad de Madrid and Delegación de Medio Ambiente, Junta de Castilla-La Mancha gave us working permissions. This work was supported by projects PAC05-006-2 (to J.A. Dávila) and CGL2006-07481/BOS. DC was supported by a grant from the Ministerio de Educación y Ciencia (I3P-BDP2005). RJ is supported by a Ramón y Cajal research contract (RYC-2009-03967) from the Ministerio de Ciencia e Innovación. JP was supported during writing by project CGL2009-10652 (to J.C. Senar).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Canal.

Additional information

Communicated by S. Pruett-Jones

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Canal, D., Jovani, R. & Potti, J. Multiple mating opportunities boost protandry in a pied flycatcher population. Behav Ecol Sociobiol 66, 67–76 (2012). https://doi.org/10.1007/s00265-011-1253-8

Download citation

Keywords

  • Extra-pair paternity
  • Ficedula hypoleuca
  • Mate opportunity hypothesis
  • Protandry
  • Rank advantage hypothesis
  • Social polygyny