Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil

Abstract

Inadvertent selection is an important genetic process that frequently occurs during laboratory culture. The mass-reared strain of the sweet potato weevil Cylas formicarius exhibits stronger inbreeding depression than the wild strain does. When inbreeding depression occurs in a population, mating with a close relative is often considered maladaptive; however, in some contexts, the inclusive fitness benefits of inbreeding may outweigh the costs, favoring individuals that tolerate a low level of inbreeding depression. Theory predicts that mass-reared strain weevils will avoid inbreeding while wild strain weevils will tolerate inbreeding. To examine this prediction, we compared the effect of relatedness on the mating and insemination successes in mass-reared and wild strains of C. formicarius. While close relative pairs of the wild strain copulated less frequently than non-kin pairs, almost all mass-reared strain pairs copulated irrespective of relatedness. The results showed that the strain with weak inbreeding depression (wild strain) avoided inbreeding, whereas the strain with strong inbreeding depression (mass-reared strain) tolerated inbreeding. The contradiction between the theoretical prediction and our results is discussed from the perspective of laboratory adaptation, mating systems, and life history of C. formicarius.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ala-Honkola O, Uddström A, Diaz Pauli A, Lindström K (2009) Strong inbreeding depression in male mating behaviour in a poeciliid fish. J Evol Biol 22:1396–1406. doi:10.1111/j.1420-9101.2009.01765.x

    PubMed  Article  Google Scholar 

  2. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    PubMed  Article  Google Scholar 

  3. Cohen LB, Dearborn DC (2004) Great frigatebirds, Fregata minor, choose mates that are genetically similar. Anim Behav 68:1229–1236. doi:10.1016/j.anbehav.2003.12.021

    Article  Google Scholar 

  4. Crawley MJ (2005) Statistics: an introduction using R. Wiley, West Sussex

    Google Scholar 

  5. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270. doi:10.1038/sj.hdy.6885530

    PubMed  Article  Google Scholar 

  6. Danielsson I (2001) Antagonistic pre- and post-copulatory selection on male body size in a water strider (Gerris lacustris). Proc R Soc Lond B 266:1041–1047. doi:10.1098/rspb.2000.1332

    Google Scholar 

  7. De Luca PA, Cocroft RB (2008) The effects of age and relatedness on mating patterns in thornbug treehoppers: inbreeding avoidance or inbreeding tolerance? Behav Ecol Sociobiol 62:1869–1875. doi:10.1007/s00265-008-0616-2

    Article  Google Scholar 

  8. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  9. Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique, principles and practice in area-wide integrated pest management. Springer, Dordrecht

    Google Scholar 

  10. Eberhardt WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  11. Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. doi:10.1111/j.1365-294X.2007.03399.x

    PubMed  Article  Google Scholar 

  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  13. Grafen A (1990) Do animals really recognize kin? Anim Behav 39:42–54. doi:10.1016/S0003-3472(05)80724-9

    Article  Google Scholar 

  14. Heath RR, Coffelt JA, Sonnet PE, Proshold FI, Dueben B, Tumlinson JH (1986) Identification of sex pheromone produced by female sweetpotato weevil, Cylas formicarius elegantulus (Summers). J Chem Ecol 12:1489–1503. doi:10.1007/BF01012367

    Article  CAS  Google Scholar 

  15. Jamieson IG, Taylor SS, Tracy LN, Kokko H, Armstrong DP (2009) Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks. Behav Ecol 20:575–584. doi:10.1093/beheco/arp034

    Article  Google Scholar 

  16. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi:10.1016/S0169-5347(02)02489-8

    Article  Google Scholar 

  17. Kokko H, Ots I (2006) When not to avoid inbreeding. Evolution 60:467–475. doi:10.1554/05-613.1

    PubMed  Google Scholar 

  18. Kuriwada T, Kumano N, Shiromoto K, Haraguchi D (2009) Copulation reduces the duration of death-feigning behaviour in the sweetpotato weevil, Cylas formicarius. Anim Behav 78:1145–1151. doi:10.1016/j.anbehav.2009.07.031

    Article  Google Scholar 

  19. Kuriwada T, Kumano N, Shiromoto K, Haraguchi D (2010) The effect of mass-rearing on life history traits and inbreeding depression in the sweetpotato weevil Cylas formicarius elegantulus (Coleoptera: Brentidae). J Econ Entomol 103:1144–1148. doi:10.1603/EC09361

    PubMed  Article  CAS  Google Scholar 

  20. Lacy RC, Sherman PW (1983) Kin recognition by phenotype matching. Am Nat 121:489–512. doi:10.1086/284078

    Article  Google Scholar 

  21. Le Galliard JF, Ferrière R (2008) The adaptive evolution of social traits. In: Danchin E, Giraldeau LA, Cézilly F (eds) Behavioural ecology. Oxford University Press, Oxford, pp 547–575

    Google Scholar 

  22. Lehmann L, Perrin N (2003) Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am Nat 162:638–652. doi:10.1086/378823

    PubMed  Article  Google Scholar 

  23. Miyatake T, Moriya S, Kohama T, Shimoji Y (1997) Dispersal potential of male Cylas formicarius (Coleoptera: Brentidae) over land and water. Environ Entomol 26:272–276

    Google Scholar 

  24. Thurin N, Aron S (2009) Sib-mating in the ant Plagiolepis pygmaea: adaptative inbreeding? J Evol Biol 22:2481–2487. doi:10.1111/j.1420-9101.2009.01864.x

    PubMed  Article  CAS  Google Scholar 

  25. Olsson M, Shine R, Madsen T, Gullberg A, Tegelström H (1996) Sperm selection by females. Nature 383:585. doi:10.1038/383585a0

    Article  CAS  Google Scholar 

  26. Oosterhout CV, Trigg RE (2003) Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J Evol Biol 16:273–281. doi:10.1046/j.1420-9101.2003.00511.x

    PubMed  Article  Google Scholar 

  27. Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, London, pp 123–166

    Google Scholar 

  28. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259. doi:10.1098/rstb.2005.1785

    PubMed  Article  CAS  Google Scholar 

  29. Pizzari TH, Løvlie H, Cornwallis CK (2004) Sex-specific, counteracting responses to inbreeding in a bird. Proc Bio Sci 271:2115–2121. doi:10.1098/rspb.2004.2843

    Article  Google Scholar 

  30. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206. doi:10.1016/0169-5347(96)10028-8

    PubMed  Article  CAS  Google Scholar 

  31. Roff DA (2002) Life history evolution. Sinauer, Sunderland, MA

    Google Scholar 

  32. Sakurai G, Kasuya E (2008) The costs of harassment in the adzuki bean beetle. Anim Behav 75:1367–1373. doi:10.1016/j.anbehav.2007.09.010

    Article  Google Scholar 

  33. Schjørring S, Jäger I (2007) Incestuous mate preference by a simultaneous hermaphrodite with strong inbreeding depression. Evolution 61:423–430. doi:10.1111/j.1558-5646.2007.00028.x

    PubMed  Article  Google Scholar 

  34. Sgrò CM, Partridge L (2000) Evolutionary responses of the life history of wild-caught Drosophila melanogaster to two standard methods of laboratory culture. Am Nat 156:341–353

    Article  Google Scholar 

  35. Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

    Google Scholar 

  36. Simmons LW, Thomas ML (2008) No postcopulatory response to inbreeding by male crickets. Biol Lett 4:183–185. doi:10.1098/rsbl.2007.0578

    PubMed  Article  Google Scholar 

  37. Simões P, Rose MR, Duarte A, Gonçalves R, Matos M (2007) Evolutionary domestication in Drosophila subobscura. J Evol Biol 20:758–766. doi:10.1111/j.1420-9101.2006.01244.x

    PubMed  Article  Google Scholar 

  38. Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  39. Sugimoto T, Sakuratani Y, Fukui H, Kiritani K, Okada T (1996) Estimating the reproductive properties of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera, Brentidae). Appl Entomol Zool 31:357–367

    Google Scholar 

  40. Thornhill R (1983) Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am Nat 122:765–788. doi:10.1086/284170

    Article  Google Scholar 

  41. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge

    Google Scholar 

  42. Thünken T, Bakker TCM, Baldauf SA, Kullmann H (2007) Active inbreeding in a cichlid fish and its adaptive significance. Curr Biol 17:225–229. doi:10.1016/j.cub.2006.11.053

    PubMed  Article  Google Scholar 

  43. Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73. doi:10.1038/415071a

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of OPPPC and Ryukyu Sankei Co. Ltd. for their assistance. We also thank Dr. H. Hirayama, N. Shimada, Dr. G. Sakurai, Dr. T. Uehara, and T. Yamamoto for their help with collecting references. The manuscript was greatly improved by the valuable comments of two anonymous referees.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takashi Kuriwada.

Additional information

Communicated by J. Choe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuriwada, T., Kumano, N., Shiromoto, K. et al. Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil. Behav Ecol Sociobiol 65, 1483–1489 (2011). https://doi.org/10.1007/s00265-011-1158-6

Download citation

Keywords

  • Relatedness
  • Domestication
  • Coleoptera
  • Laboratory adaptation
  • Sexual selection