Skip to main content
Log in

When rate maximization is impulsive

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Although optimal foraging theory predicts that natural selection should favor animal behaviors that maximize long-term rate of gain, behaviors observed in the laboratory tend to be impulsive. In binary-choice experiments, despite the long-term gain of each alternative, animals favor short handling times. Most explanations of this behavior suggest that there is hidden rationality in impulsiveness. Instead, we suggest that simultaneous and mutually exclusive binary-choice encounters are often unnatural and thus immune to the effects of natural selection. Using a simulation of an imperfect forager, we show how a simple strategy (i.e., an intuitive model of animal behavior) that maximizes long-term rate of gain under natural conditions appears to be impulsive under operant laboratory conditions. We then show how the accuracy of this model can be verified in the laboratory by biasing subjects with a short pre-experiment ad libitum high-quality feeding period. We also show a similar behavioral mechanism results in diet preferences that are qualitatively consistent with the digestive rate model of foraging (i.e., foraging under digestive rate constraints).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainslie GW (1974) Impulse control in pigeons. J Exp Anal Behav 21(3):485–489

    Article  CAS  PubMed  Google Scholar 

  • Ainslie GW (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82(4):463–496

    Article  CAS  PubMed  Google Scholar 

  • Andrews BW, Passino KM, Waite TA (2004) Foraging theory for decision-making system design: task-type choice. In: Proceedings of the 43rd IEEE conference on decision and control, Nasssau, Bahamas, vol 5, pp 4740–4745. doi:10.1109/CDC.2004.1429539

    Google Scholar 

  • Bateson M, Kacelnik A (1996) Rate currencies and the foraging starling: the fallacy of the averages revisited. Behav Ecol 7(3):341–352. doi:10.1093/beheco/7.3.341

    Article  Google Scholar 

  • Bradshaw CM, Szabadi E (1992) Choice between delayed reinforcers in a discrete-trials schedule: the effect of deprivation level. Q J Exp Psychol 44(1):1–16

    CAS  Google Scholar 

  • Charnov EL (1973) Optimal foraging: some theoretical explorations. Dissertation, University of Washington

  • Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110(971):141–151

    Article  Google Scholar 

  • Giraldeau L-A, Livoreil B (1998) Game theory and social foraging. In: Dugatkin LA, Reeve HK (eds) Game theory and animal behavior. Oxford University Press, New York, pp 16–37

    Google Scholar 

  • Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Green L, Fisher Jr EB, Perlow S, Sherman L (1981) Preference reversal and self-control: choice as a function of reward amount and delay. Behav Anal Lett 1:43–51

    Google Scholar 

  • Henly SE, Ostdiek A, Blackwell E, Knutie S, Dunlap AS, Stephens DW (2008) The discounting-by-interruptions hypothesis: model and experiment. Behav Ecol 19(1):154–162. doi:10.1093/beheco/arm110

    Article  Google Scholar 

  • Hirakawa H (1995) Diet optimization with a nutrient or toxin constraint. Theor Popul Biol 47(3):331–346

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H (1997a) Digestion-constrained optimal foraging in generalist mammalian herbivores. Oikos 78(1):37–47

    Article  Google Scholar 

  • Hirakawa H (1997b) How important is digestive quality? A correction of Verlinden and Wiley’s digestive rate model. Evol Ecol 11(2):249–251

    Google Scholar 

  • Houston AI, McNamara JM (1985) The choice of two prey types that minimizes the probability of starvation. Behav Ecol Sociobiol 17(2):135–141. doi:10.1007/BF00299245

    Google Scholar 

  • McDiarmid CF, Rilling ME (1965) Reinforcement delay and reinforcement rate as determinants of schedule preference. Psychon Sci 2:195–196

    Google Scholar 

  • Monterosso J, Ainslie GW (1999) Beyond discounting: possible experimental models of impulse control. Psychopharmacology 146:339–347

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR (1974) On the theory of optimal diets. Am Nat 108(959):59–74

    Article  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):137–154

    Article  Google Scholar 

  • Quaintenne G, van Gils JA, Bocher P, Dekinga A, Piersma T (2010) Diet selection in a molluscivore shorebird across Western Europe: does it show short- or long-term intake rate-maximization? J Anim Ecol 79(1):53–62. doi:10.1111/j.1365-2656.2009.01608.x

    Article  PubMed  Google Scholar 

  • Quijano N, Andrews BW, Passino KM (2006) Foraging theory for multizone temperature control. IEEE Comput Intell Mag 1(4):18–27. doi:10.1109/MCI.2006.329704

    Google Scholar 

  • Rachlin H, Green L (1972) Commitment, choice and self-control. J Exp Anal Behav 17(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404

    Article  Google Scholar 

  • Siegel E, Rachlin H (1995) Soft commitment: self-control achieved by response persistence. J Exp Anal Behav 64(2):117–128

    Article  CAS  PubMed  Google Scholar 

  • Sih A, Christensen B (2001) Optimal diet theory: when does it work, and when and why does it fail? Anim Behav 61(2):379–390. doi:10.1006/anbe.2000.1592

    Article  Google Scholar 

  • Snyderman M (1983) Optimal prey selection: the effects of food deprivation. Behav Anal Lett 3:359–369

    Google Scholar 

  • Stephens DW (2002) Discrimination, discounting and impulsivity: a role for an informational constraint. Philos Trans R Soc B 357(1427):1527–1537. doi:10.1098/rstb.2002.1062

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Stephens DW, Anderson D (2001) The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav Ecol 12(3):330–339

    Article  Google Scholar 

  • Stephens DW, McLinn CM (2003) Choice and context: test a simple short-term choice rule. Anim Behav 66(1):59–70. doi:10.1006/anbe.2003.2177

    Article  Google Scholar 

  • Stephens DW, Kerr B, Fernández-Juricic E (2004) Impulsiveness without discounting: the ecological rationality hypothesis. Proc R Soc B 271(1556):2459–2465. doi:10.1098/rspb.2004.2871

    Article  PubMed  Google Scholar 

  • van Gils JA, de Rooij SR, van Belle J, van der Meer J, Dekinga A, Piersma T, Drent R (2005) Digestive bottleneck affects foraging decisions in red knots Calidris canutus. I. Prey choice. J Anim Ecol 74(1):105–119. doi:10.1111/j.1365-2656.2004.00903.x

    Article  Google Scholar 

  • Verlinden C, Wiley RH (1989) The constraints of digestive rate: an alternative model of diet selection. Evol Ecol 3(3):264–272. doi:10.1007/BF02270727

    Article  Google Scholar 

  • Whelan CJ, Brown JS (2005) Optimal foraging and gut constraints: reconciling two schools of thought. Oikos 110(3):481–496. doi:10.1111/j.0030-1299.2005.13387.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas A. Waite for his helpful insights and instruction and Ian M. Hamilton for his comments on and suggestions for this paper. We are also grateful for the comments and suggestions of two anonymous referees. An anonymous reviewer on a related submission also provided helpful comments that influenced the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore P. Pavlic.

Additional information

Communicated by J. Lindström

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 271 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlic, T.P., Passino, K.M. When rate maximization is impulsive. Behav Ecol Sociobiol 64, 1255–1265 (2010). https://doi.org/10.1007/s00265-010-0940-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-0940-1

Keywords

Navigation