Advertisement

Behavioral Ecology and Sociobiology

, Volume 64, Issue 3, pp 337–347 | Cite as

Conditional sex allocation in the Red Mason bee, Osmia rufa

  • Karsten Seidelmann
  • Karin Ulbrich
  • Norbert Mielenz
Original Paper

Abstract

Trivers' and Willard's hypothesis that natural selection favors sex allocation in relation to maternal condition assumes iteropary. Though this assumption is not met in most solitary Aculeata, the reproductive life span of semelparous females may be divided into discrete successive cycles by the risk of open-cell parasitism. Females can avoid losing their investment to parasites attacking the open cell only by limiting the provision time for each cell. The restriction of time available for the investment in a single progeny irrespective of the condition of the female leads to de facto iteropary. Moreover, in Hymenoptera, there are no costs for sex allocation due to the haplodiploid mode of sex determination. In sexually size dimorphic species, females in poor condition are predicted to invest in the smaller sex and vice versa. The resulting prediction of a conditional sex allocation in solitary Aculeata was tested in the Red Mason bee, Osmia rufa (Osmia bicornis), a stem or hole-nesting, polylectic, univoltine megachilid bee. Body size is a key component of condition in females of nest-constructing solitary bees. Large females collect the same amount of pollen and nectar in a shorter time than small ones and should suffer less from parasitism. We found that small females dealt with their handicap of a low provisioning performance by shifting the sex ratio toward sons (the smaller sex) and by reducing the body size of daughters. Large females, however, shifted their offspring sex ratio toward daughters, the sex that depends more on body size in its reproductive value. The sex ratio in the population met the expected Fisherian sex ratio. Although females allocated their investment in the sexes according to their body mass, the population-level investment was balanced.

Keywords

Parental investment Conditional sex allocation Progeny body size Mass provisioning 

Notes

Acknowledgments

We are very grateful to H. Ruhnke for her assistance in the field work. We wish to thank Bryan Danforth and anonymous reviewers for their comments on the manuscript. This work was supported by a grant from the Helmholtz-Zentrum für Umweltforschung—UFZ.

References

  1. Agresti A (2002) Categorical data analysis. Wiley series in probability and statistics, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Alcock J (1979) The relation between female body size and provisioning behavior in the bee Centris pallida. J Kansas Entomol Soc 52:623–632Google Scholar
  3. Alcock J (1980) Natural selection and mating systems of solitary bees. Am Scientist 68:146–153Google Scholar
  4. Alcock J (1990) Body size and territorial behavior in the bee Protoxaea gloriosa (Fox) (Hymenoptera: Oxaeidae). Pan-Pac Entomol 66:157–161Google Scholar
  5. Alcock J, Eickwort GC, Eickwort KR (1977) The reproductive behavior of Anthidium maculosum (Hymenoptera: Megachilidae) and the evolutionary significance of multiple copulations by females. Behav Ecol Sociobiol 2:385–396CrossRefGoogle Scholar
  6. Bosch J (2008) Production of undersized offspring in a solitary bee. Anim Behav 75:809–816CrossRefGoogle Scholar
  7. Bosch J, Kemp WP (2004) Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie 35:469–479CrossRefGoogle Scholar
  8. Bosch J, Vicens N (2002) Body size as an estimator of production costs in a solitary bee. Ecol Entomol 27:129–137CrossRefGoogle Scholar
  9. Bosch J, Vicens N (2005) Sex allocation in the solitary bee Osmia cornuta: do females behave in agreement with Fisher’s theory? Behav Ecol Sociobiol 59:124–132CrossRefGoogle Scholar
  10. Bosch J, Vicens N (2006) Relationship between body size, provisioning rate, lengevity and reproductive success in females of the solitary bee Osmia cornuta. Behav Ecol Sociobiol 60:26–33CrossRefGoogle Scholar
  11. Brockmann HJ, Grafen A (1989) Mate conflict and male behaviour in a solitary wasp, Trypoxylon (Trypargilum) politum (Hymenoptera: Sphecidae). Anim Behav 37:232–255CrossRefGoogle Scholar
  12. Carranza F (2002) What did Trivers and Willard really predict? Anim Behav 63:F1–F3CrossRefGoogle Scholar
  13. Charnov EL (1982) The theory of sex allocation. Monographs in population biology. Princeton University Press, Princeton, p 18Google Scholar
  14. Danforth BN (1990) Provisioning behavior and the estimation of investment ratios in a solitary bee, Calliopsis (Hypomarotera) persimilis (Cockerell) (Hymenoptera: Andrenidae). Behav Ecol Sociobiol 27:159–168CrossRefGoogle Scholar
  15. Danforth BN, Visscher PK (1993) Dynamics of a host–cleptoparasite relationship: Holcopasites ruthae as a parasite of Calliopsis pugionis (Hymenoptera: Anthophoridae, Andrenidae). Ann Entomol Soc Am 86:833–840Google Scholar
  16. Fisher RA (1958) The genetical theory of natural selection, 2nd edn. Dover, New YorkGoogle Scholar
  17. Frank SA (1995) Sex allocation in solitary bees and wasps. Am Nat 146:316–323CrossRefGoogle Scholar
  18. Freeman BE (1981a) Parental investment, maternal size and population dynamics of a solitary wasp. Am Nat 117:357–362CrossRefGoogle Scholar
  19. Freeman BE (1981b) Parental investment and its ecological consequences in the solitary wasp Sceliphron assimile (Dahlbohm) (Sphecidae). Behav Ecol Sociobiol 9:261–268CrossRefGoogle Scholar
  20. Frohlich DR, Tepedino VJ (1986) Sex ratio, parental investment, and interparent variability in nesting success in a solitary bee. Evolution 40:142–151CrossRefGoogle Scholar
  21. Gerber HS, Klostermeyer EC (1970) Sex control by bees: a voluntary act of sex fertilization during oviposition. Science 167:82–84CrossRefPubMedGoogle Scholar
  22. Helms KR (1994) Sexual size dimorphism and sex ratios in bees and wasps. Am Nat 143:418–434CrossRefGoogle Scholar
  23. Holm SN (1973) Osmia rufa L. (Hym. Megachilidae) as a pollinator of plants in greenhouses. Ent Scand 4:217–224Google Scholar
  24. Ivanov SP (2006) The nesting of Osmia rufa (L.) (Hymenoptera, Megachilidae) in the Crimea: structure and composition of nests. Entomol Rev 86:524–533CrossRefGoogle Scholar
  25. Johnson MD (1988) The relationship of provision weight to adult weight and sex ratio in the solitary bee Ceratina calcarata. Ecol Entomol 13:165–170CrossRefGoogle Scholar
  26. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997CrossRefPubMedGoogle Scholar
  27. Kim J-Y (1997) Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol Entomol 22:275–282CrossRefGoogle Scholar
  28. Kim J-Y (1999) Influence of resource level on maternal investment in a leaf-cutter bee (Hymenoptera: Megachilidae). Behav Ecol 10:552–556CrossRefGoogle Scholar
  29. Kim J-Y, Thorp RW (2001) Maternal investment and size-number trade-off in a bee, Megachile apicalis, in seasonal environments. Oecologia 126:451–456CrossRefGoogle Scholar
  30. Klostermeyer EC, Mech SJ, Rasmussen WB (1973) Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J Kans Entomol Soc 46:536–548Google Scholar
  31. Krombein KV (1967) Trap-nesting wasps and bees: life histories, nests, and associates. Smithonian, WashingtonGoogle Scholar
  32. Krunić M, Stanisavljević L, Pinzauti M, Felicioli A (2005) The accompanying fauna of Osmia cornuta and Osmia rufa and effective measures of protection. Bull Insect 58:141–152Google Scholar
  33. Larsson FK (1990) Female body size relationships with fecundity and egg size in two solitary species of fossorial Hymenoptera (Colletidae and Sphecidae). Entomol Generalis 15:167–171Google Scholar
  34. Leimar O (1996) Life-history analysis of the Trivers and Willard sex-ratio problem. Behav Ecol 7:316–325CrossRefGoogle Scholar
  35. Maddocks R, Paulus HF (1987) Quantitative Aspekte der Brutbiologie von Osmia rufa L. und Osmia cornuta Latr. (Hymenoptera, Megachilidae): Eine vergleichende Untersuchung zu Mechanismen der Konkurrenzminderung zweier nahverwandter Bienenarten. Zool Jahrb, Abt System, Ökol Geogr Tiere 114:15–44Google Scholar
  36. Marshall DJ, Bonduriansky R, Bussière LF (2008) Offspring size variation within broods as a bet-hedging strategy in unpredictable environments. Ecology 89:2506–2517CrossRefPubMedGoogle Scholar
  37. Molumby A (1997) Why make daughters larger? Maternal sex-allocation and sex-dependent selection for body size in a mass-provisioning wasp, Trypoxylon politum. Behav Ecol 8:279–287CrossRefGoogle Scholar
  38. O'Neill KM (1983) The significance of body size in territorial interactions of male beewolves (Hymenoptera: Sphecidae). Can J Zool 63:2187–2193CrossRefGoogle Scholar
  39. O'Neill KM, Evans HE, O'Neill RP (1989) Phenotypic correlates of mating success in the sand wasp Bembecinus quinquespinosus (Hymenoptera: Sphecidae). Can J Zool 67:2557–2568CrossRefGoogle Scholar
  40. Peruquetti RC, Del Lama MA (2003) Sex allocation and sex-dependent selection for body size in Trypoxylon rogenhoferi Kohl (Hymenoptera, Sphecidae). Rev Bras Entomol 47:581–588Google Scholar
  41. Peterson JH, Roitberg BD (2006) Impacts of flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata. Behav Ecol Sociobiol 59:589–596CrossRefGoogle Scholar
  42. Phillips JK, Klostermeyer EC (1978) Nesting behavior of Osmia lignaria propinqua Cresson, (Hymenoptera: Megachilidae). J Kansas Entomol Soc 51:91–108Google Scholar
  43. Piepho HP, Möhring J (2006) Selection in cultivar trials—is it ignorable? Crop Sci 46:192–201CrossRefGoogle Scholar
  44. Raw A (1972) The biology of the solitary bee Osmia rufa (L.) (Megachilidae). Trans R Ent Soc Lond 124:213–229Google Scholar
  45. Rosenheim JA, Nonacs P, Mangel M (1996) Sex ratios and multifaceted parental investment. Am Nat 148:501–535CrossRefGoogle Scholar
  46. SAS Institute Inc (2008) SAS/STAT 9.2 user’s guide. CaryGoogle Scholar
  47. Seidelmann K (1990) Zur Parasitenkontrolle in Stammzuchten der Roten Mauerbiene Osmia rufa (L.). Wiss Z M-Luther-Univ Halle-Wittenberg, Math-Naturwiss R 39:25–34Google Scholar
  48. Seidelmann K (1995) Untersuchungen zur Reproduktionsbiologie der Roten Mauerbiene, Osmia rufa (L., 1758) (Dissertation). M.-Luther-Universität, HalleGoogle Scholar
  49. Seidelmann K (1999) The race for females: the mating system of the red mason bee, Osmia rufa (L.) (Hymenoptera: Megachilidae). J Insect Behav 12:13–25CrossRefGoogle Scholar
  50. Seidelmann K (2006) Open-cell parasitism shapes maternal investment patterns in the Red Mason bee Osmia rufa. Behav Ecol 17:839–848CrossRefGoogle Scholar
  51. Severinghaus LL, Kurtak BH, Eickwort GC (1981) The reproductive behavior of Anthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males. Behav Ecol Sociobiol 9:51–58CrossRefGoogle Scholar
  52. Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506CrossRefGoogle Scholar
  53. Strickler K (1982) Parental investment per offspring by a specialist bee: does it change seasonally? Evolution 36:1098–1100CrossRefGoogle Scholar
  54. Strohm E (2000) Factors affecting body size and fat content in a digger wasp. Oecologia 123:184–191CrossRefGoogle Scholar
  55. Strohm E, Linsenmair KE (1997a) Female size affects provisioning and sex allocation in a digger wasp. Anim Behav 54:23–34CrossRefPubMedGoogle Scholar
  56. Strohm E, Linsenmair KE (1997b) Low resource availability causes extremely male-biased investment ratios in the European beewolf, Philanthus triangulum F. (Hymenoptera, Specidae). Proc R Soc Lond B 264:423–429CrossRefGoogle Scholar
  57. Strohm E, Daniels H, Warmers C, Stoll C (2002) Nest provisioning and a possible cost of reproduction in the megachilid bee Osmia rufa studied by a new observation method. Ethol Ecol Evol 14:255–268Google Scholar
  58. Stubblefield JW, Seger J (1994) Sexual dimorphism in the Hymenoptera. In: Short RV, Balaban E (eds) The differences between the sexes. Cambridge University Press, Cambridge, pp 71–103Google Scholar
  59. Sugiura N (1991) Male territoriality and mating tactics in the woolcarder bee, Anthidium septemspinosum Lepeletier (Hymenoptera: Megachilidae). J Ethol 9:95–103CrossRefGoogle Scholar
  60. Sugiura N, Maeta Y (1989) Parental investment and offspring sex ratio in a solitary mason bee, Osmia cornifrons (Radoszkowski) (Hymenoptera, Megachilidae). Japan J Entomol 57:861–875Google Scholar
  61. Tasei J-N (1973) Le comportement de nidification chez Osmia (Osmia) cornuta Latr. et Osmia (Osmia) rufa L. (Hymenoptera Megachilidae). Apidologie 4:195–225CrossRefGoogle Scholar
  62. Tepedino VJ, Torchio PF (1982) Phenotypic variability in nesting success among Osmia lignaria propinqua females in a glasshouse environment (Hymenoptera: Megachilidae). Ecol Entomol 7:453–462CrossRefGoogle Scholar
  63. Tepedino VJ, Torchio PF (1989) The influence of nest-hole selection on sex ratio and progeny size in Osmia lignaria propinqua (Hymenoptera: Megachilidae). Ann Entomol Soc Am 82:355–360Google Scholar
  64. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, CambridgeGoogle Scholar
  65. Tomkins JL, Simmons LW, Alcock J (2001) Brood-provisioning strategies in Dawson's burrowing bee, Amegilla dawsoni (Hymenoptera: Anthophorini). Behav Ecol Sociobiol 50:81–89CrossRefGoogle Scholar
  66. Torchio PF, Tepedino VJ (1980) Sex ratio, body size and seasonality in a solitary bee, Osmia lignaria propinqua Cresson (Hymenoptera: Megachilidae). Evolution 34:993–1003CrossRefGoogle Scholar
  67. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92CrossRefPubMedGoogle Scholar
  68. Ulbrich K, Seidelmann K (2001) Modeling population dynamics of solitary bees in relation to habitat quality. Web Ecology 2:57–64Google Scholar
  69. Wcislo WT, Minckley RL, Spangler HC (1992) Pre-copulatory courtship behavior in a solitary bee, Nomia triangulifera Vachal (Hymenoptera: Halictidae). Apidologie 23:431–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Karsten Seidelmann
    • 1
  • Karin Ulbrich
    • 2
  • Norbert Mielenz
    • 3
  1. 1.Institut für Biologie/Zoologie, Abteilung TierphysiologieMartin-Luther-Universität HalleHalle (Saale)Germany
  2. 2.Department BiozönoseforschungHelmholtz-Zentrum für Umweltforschung—UFZHalle (Saale)Germany
  3. 3.Institut für Agrar und ErnährungswissenschaftenMartin-Luther-Universität HalleHalle (Saale)Germany

Personalised recommendations