Behavioral Ecology and Sociobiology

, Volume 63, Issue 10, pp 1515–1526 | Cite as

Variation along the shy–bold continuum in extremophile fishes (Poecilia mexicana, Poecilia sulphuraria)

  • Rüdiger RieschEmail author
  • Virginia Duwe
  • Nina Herrmann
  • Lisa Padur
  • Annemarie Ramm
  • Kristin Scharnweber
  • Matthias Schulte
  • Tanja Schulz-Mirbach
  • Madlen Ziege
  • Martin Plath
Original Paper


One potential trade-off that bold individuals face is between increased predation risks and gains in resources. Individuals experiencing high predation and hungry individuals (or individuals with low body condition) are predicted to show increased boldness. We examined one behavioral trait previously reported to be associated with boldness (the time individual fish needed to emerge from shelter) in various populations of mollies (Poecilia spp.). Our study system included several southern Mexican surface streams with high piscine predation and high food availability, sulfidic surface streams with high avian predation, in which the inhabiting fish show reduced body condition, and a sulfidic cave, where predation and body condition are low. Our comparison revealed very short times to emerge from the start box in populations from non-sulfidic streams. In sulfidic habitats (whether surface or cave), it took individual Poecilia mexicana considerably longer to emerge from the start box, and the same difference was also found in an independent comparison between P. mexicana and the closely related, highly sulfide-adapted Poecilia sulphuraria. Fish reared under common garden conditions (in the absence of predators and hydrogen sulfide) showed intermediate boldness scores to the extremes observed in the field. Our data thus indicate that (a) boldness is shaped by environmental conditions/experiential effects, but is not heritable, (b) predation affects boldness in the predicted direction, but (c) low body condition leads to reduced boldness. Extremophile Poecilia spp. spend most of their time surfacing to survive under sulfidic and hypoxic conditions, which exposes them to increased levels of predations, but the fish forage on the bottom. Hence, in this system, increased boldness does not increase foraging success. We argue that energy limitation favors reducing energetically costly behaviors, and exploring novel environments may be just one of them.


Boldness Extremophiles Hydrogen sulfide Poeciliidae Predator regimes 



We would like to thank A. Böttger, N. Bunzel (both University of Potsdam), and J. Horstkotte (University of Hamburg) for their help in the field. We thank G. Rosenthal for commenting on a previous manuscript draft. G. Rosenthal and J.B. Johnson kindly provided information about boldness in Xiphophorus spp. The Mexican Government (Permiso de Pesca de Fomento No. DGOPA.06192.240608.-1562), Semarnat (No. SGPA/DGVS/04148/08 and SGPA/DGVS/04751/08), as well as the Municipal of Tacotalpa (SM/1133/208) kindly provided permits for the work at the Cueva del Azufre and the Baños del Azufre areas. Financial support came from the DFG (PL 470/1-2, to M.P.) and from NSF (#105095200).


  1. Alvarez del Villar J (1948) Descripción de una nueva especie de Mollienisia capturada en Baños del Azufre, Tabasco (Pisces, Poeciliidae). An Esc Nac Cienc Biol 5:275–281Google Scholar
  2. Bakker TCM (1986) Aggressiveness in sticklebacks (Gasterosteus aculeatus)—a behavior-genetic study. Behaviour 98:1–144CrossRefGoogle Scholar
  3. Bell AM (2005) Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J Evol Biol 18:464–473PubMedCrossRefGoogle Scholar
  4. Brown C, Braithwaite VA (2004) Size matters: a test of boldness in eight populations of bishop, Brachyraphis episcopi. Anim Behav 68:1325–1329CrossRefGoogle Scholar
  5. Brown C, Jones F, Braithwaite VA (2005) In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim Behav 70:1003–1009CrossRefGoogle Scholar
  6. Brown C, Burgess F, Braithwaite VA (2007a) Heritable and experiential effects on boldness in a tropical poeciliid. Behav Ecol Sociobiol 62:237–243CrossRefGoogle Scholar
  7. Brown C, Jones F, Braithwaite VA (2007b) Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J Fish Biol 71:1590–1601Google Scholar
  8. Carrico R, Blumberg W, Peisach J (1978) The reversible binding of oxygen to sulfhemoglobin. J Biol Chem 253:7212–7215PubMedGoogle Scholar
  9. Chapman LJ, Chapman CA (1993) Desiccation, flooding, and the behavior of Poecilia gillii (Pisces: Poeciliidae). Ichthyol Explor Freshw 4:279–287Google Scholar
  10. Coleman K, Wilson DS (1998) Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific. Anim Behav 56:927–936PubMedCrossRefGoogle Scholar
  11. Dall SR, Houston AI, McNamara JM (2004) The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739CrossRefGoogle Scholar
  12. Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184CrossRefGoogle Scholar
  13. Dingemanse NJ, Both C, Drent PJ, Tinbergen JM (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc R Soc Lond B 271:847–852CrossRefGoogle Scholar
  14. Dingemanse NJ, Wright J, Kazem AJN, Thomas DK, Hickling R, Dawnay N (2007) Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J Anim Ecol 76:1128–1138PubMedCrossRefGoogle Scholar
  15. Dingemanse NJ, Van der Plas F, Wright J, Réale D, Schrama M, Roff DA, Van der Zee E, Barber I (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B 276:1285–1293Google Scholar
  16. Evans C (1967) The toxicity of hydrogen sulphide and other sulphides. Quart J Exp Physiol 52:231–248PubMedGoogle Scholar
  17. Fraser DF, Gilliam JF, Daley MJ, Le AN, Skalski GT (2001) Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. Am Nat 158:124–135PubMedCrossRefGoogle Scholar
  18. Godin J-GJ, Dugatkin LA (1999) Female mating preference for bold males in the guppy, Poecilia reticulata. Proc Natl Acad Sci U S A 93:10262–10267CrossRefGoogle Scholar
  19. Gordon MS, Rosen DE (1962) A cavernicolous form of the Poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 1962:360–368CrossRefGoogle Scholar
  20. Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86PubMedCrossRefGoogle Scholar
  21. Gosling SD, John OP (1999) Personality dimensions in non-human animals: a cross-species review. Curr Dir Psychol Sci 8:69–75CrossRefGoogle Scholar
  22. Ip YK, Kuah SSL, Chew SF (2004) Strategies adopted by the mudskipper Boleophthalmus boddaerti to survive sulfide exposure in normoxia or hypoxia. Physiol Biochem Zool 77:824–837PubMedCrossRefGoogle Scholar
  23. Johnsson JI, Sernland E, Blixt M (2001) Sex-specific aggression and antipredator behaviour in young brown trout. Ethology 107:587–599CrossRefGoogle Scholar
  24. Kilgour R (1975) Open-field test as an assessment of temperament of dairy cows. Anim Behav 23:615–624CrossRefGoogle Scholar
  25. Körner KE, Schlupp I, Plath M, Loew ER (2006) Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J Fish Biol 69:54–65CrossRefGoogle Scholar
  26. Kramer DL (1983) The evolutionary ecology of respiratory modes in fishes: an analysis based on the costs of breathing. Environ Biol Fish 9:145–158CrossRefGoogle Scholar
  27. Kramer DL, Manley D, Bourgeois R (1983) The effect of respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Can J Zool 61:653–665CrossRefGoogle Scholar
  28. Lopez P, Hawlena D, Polo V, Amo L, Martin J (2006) Sources of individual shy–bold variations in antipredator behaviour of male Iberian rock lizards. Anim Behav 69:1–9CrossRefGoogle Scholar
  29. Magnhagen C (2007) Social influence on the correlation between behaviours in young-of-the-year perch. Behav Ecol Sociobiol 61:525–531CrossRefGoogle Scholar
  30. Magurran AE, Macías Garcia C (2000) Sex differences in behaviour as an indirect consequence of mating system. J Fish Biol 57:839–857CrossRefGoogle Scholar
  31. McCune S (1995) The impact of paternity and early socialization on the development of cats’ behaviour to people and novel objects. Appl Anim Behav Sci 45:109–124CrossRefGoogle Scholar
  32. Miller RR (1975) Five new species of Mexican poeciliid fishes of the genera Poecilia, Gambusia, and Poeciliopsis. Occ Pap Mus Zool Univ Mich 672:1–44Google Scholar
  33. Miller RR (2005) Freshwater fishes of Mexico. University of Chicago Press, ChicagoGoogle Scholar
  34. National Research Council (1979) Hydrogen sulfide. University Park, BaltimoreGoogle Scholar
  35. Nicholls P (1975) The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced alpha-peak. Biochem Biophys Acta 396:24–35PubMedCrossRefGoogle Scholar
  36. van Oers K, Drent PJ, de Goede P, van Nordwijk AJ (2004) Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. Proc R Soc Lond B 271:65–73CrossRefGoogle Scholar
  37. Park C, Nagel R, Blumberg W, Peisach J, Maliozzo R (1986) Sulfhemoglobin: properties of partially sulfurated tetramers. J Biol Chem 261:8805–8810PubMedGoogle Scholar
  38. Parzefall J (1974) Rückbildung aggressiver Verhaltensweisen bei einer Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Z Tierpsychol 35:66–84PubMedGoogle Scholar
  39. Parzefall J (1979) Zur Genetik und biologischen Bedeutung des Aggressionsverhaltens von Poecilia sphenops (Pisces, Poeciliidae). Z Tierpsychol 50:399–422Google Scholar
  40. Parzefall J (1993) Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). In: Schröder H, Bauer J, Schartl M (eds) Trends in ichthyology: an international perspective. Blackwell Scientific, Oxford, pp 297–303Google Scholar
  41. Peters N, Peters G, Parzefall J, Wilkens H (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Int Rev Gesamten Hydrobiol 58:417–436CrossRefGoogle Scholar
  42. Plath M (2008) Male mating behavior and costs of sexual harassment for females in cavernicolous and extremophile populations of Atlantic mollies (Poecilia mexicana). Behaviour 145:73–98CrossRefGoogle Scholar
  43. Plath M, Schlupp I (2008) Parallel evolution leads to reduced shoaling behavior in two cave-dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei). Environ Biol Fish 82:289–297CrossRefGoogle Scholar
  44. Plath M, Strecker U (2008) Behavioral diversification in a young species flock of pupfish (Cyprinodon spp., Cyprinodontidae, Teleostei): shoaling and aggressive behavior. Behav Ecol Sociobiol 62:1727–1737CrossRefGoogle Scholar
  45. Plath M, Tobler M (2009) The evolutionary ecology of the cave molly (Poecilia mexicana) from the Cueva del Azufre system. In: Trajano E, Bichuette ME, Kapoor BG (eds) The biology of subterranean fishes (in press)Google Scholar
  46. Plath M, Parzefall J, Schlupp I (2003) The role of sexual harassment in cave- and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309CrossRefGoogle Scholar
  47. Plath M, Parzefall J, Körner KE, Schlupp I (2004) Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601CrossRefGoogle Scholar
  48. Plath M, Heubel KU, García de León FJ, Schlupp I (2005) Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well-fed males. Behav Ecol Sociobiol 58:144–151CrossRefGoogle Scholar
  49. Plath M, Hauswaldt JS, Moll K, Tobler M, García de León FJ, Schlupp I, Tiedemann R (2007a) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, from a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976PubMedCrossRefGoogle Scholar
  50. Plath M, Tobler M, Riesch RW, García de León FJ, Giere O, Schlupp I (2007b) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996PubMedCrossRefGoogle Scholar
  51. Plath M, Makowicz AM, Schlupp I, Tobler M (2007c) Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 18:680–688CrossRefGoogle Scholar
  52. Ptacek MB, Breden F (1998) Phylogenetic relationships among the mollies (Poeciliidae: Poecilia: Mollienesia group) based on mitochondrial DNA sequences. J Fish Biol 53:64–81CrossRefGoogle Scholar
  53. Réale D, Festa-Bianchet M (2003) Predator-induced natural selection on temperament in bighorn ewes. Anim Behav 65:463–470CrossRefGoogle Scholar
  54. Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597PubMedCrossRefGoogle Scholar
  55. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318PubMedCrossRefGoogle Scholar
  56. Reaney LT, Backwell PRY (2007) Risk-taking behavior predicts aggression and mating success in a fiddler crab. Behav Ecol 18:521–525CrossRefGoogle Scholar
  57. Riesch R, Tobler M, Schlupp I, Plath M (2009) Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae): reduced fecundity and reduced plasticity in a population of cave mollies. Environ Biol Fishes 84:89–94CrossRefGoogle Scholar
  58. Rochette R, Tetreault F, Himmelman JH (2001) Aggregation of whelks, Buccinium undatum, near feeding predators—the role of reproductive requirement. Anim Behav 61:31–41PubMedCrossRefGoogle Scholar
  59. Schartl M, Meyer MK, Wilde B (2006) Description of Priapella chamulae sp. n.—a new poeciliid fish from the upper Río Grijalva system, Tabasco, Mexico (Teleostei: Cyprinodontiformes: Poeciliidae). Zool Abh Dresden 55:59–67Google Scholar
  60. Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Quart Rev Biol 79:241–277PubMedCrossRefGoogle Scholar
  61. Sinn DL, Apiolaza LA, Moltschaniwskyj NA (2006) Heritability and fitness-related consequences of squid personality traits. J Evol Biol 19:1437–1447PubMedCrossRefGoogle Scholar
  62. Stein MB, Chartier MJ, Lizak MV, Jang L (2001) Familial aggregation of anxiety-related quantitative traits in generalized social phobia—clues to understand “disorder” heritability? Am J Med Genet 105:79–83PubMedCrossRefGoogle Scholar
  63. Svartberg K, Tapper I, Temrin H, Radesater T, Thorman S (2005) Consistency of personality in dogs. Anim Behav 69:283–291CrossRefGoogle Scholar
  64. Tobler M (2008) Divergence in trophic ecology characterises colonisation of extreme habitats. Biol J Linn Soc 95:517–528CrossRefGoogle Scholar
  65. Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585PubMedCrossRefGoogle Scholar
  66. Tobler M, Schlupp I, Plath M (2007) Predation of a cavefish (Poecilia mexicana, Poeciliidae) by a giant water bug (Belostoma, Belostomatidae) in a Mexican sulfur cave. Ecol Entomol 32:492–495CrossRefGoogle Scholar
  67. Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PGD, Tiedemann R, Plath M (2008a) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2659PubMedCrossRefGoogle Scholar
  68. Tobler M, Riesch R, García de León FJ, Schlupp I, Plath M (2008b) Two endemic and endangered fishes, Poecilia sulphuraria (Alvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat. J Fish Biol 72:523–533CrossRefGoogle Scholar
  69. Tobler M, Franssen C, Plath M (2008c) Male-biased predation of a cave fish by a giant water bug. Naturwissenschaften 95:775–779PubMedCrossRefGoogle Scholar
  70. Yoshida M, Nagamine M, Uematsu K (2005) Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fish Sci 71:314–319CrossRefGoogle Scholar
  71. Ward A, Thomas P, Hart P, Krause J (2004) Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol 55:561–568CrossRefGoogle Scholar
  72. Weber JM, Kramer DL (1983) Effects of hypoxia and surface access on growth, mortality, and behavior of juvenile guppies, Poecilia reticulata. Can J Fish Aquat Sci 40:1583–1588Google Scholar
  73. Webster MM, Ward AJW, Hart PJB (2009) Individual boldness affects interspecific interactions in sticklebacks. Behav Ecol Sociobiol 63:511–520CrossRefGoogle Scholar
  74. Wilson ADM, McLaughlin RL (2007) Behavioural syndromes in brook charr, Salvelinus fontinalis: prey-search in the field corresponds with space use in novel laboratory situations. Anim Behav 74:689–698CrossRefGoogle Scholar
  75. Wilson DS, Coleman K, Clark AB, Biederman L (1993) The shy–bold continuum in pumkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J Comp Psychol 107:250–260CrossRefGoogle Scholar
  76. Wilson DS, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. Trends Ecol Evol 9:442–446Google Scholar
  77. Winemiller KO (1989) Development of dermal lip protuberances for aquatic surface respiration in South American characid fishes. Copeia 1989:382–390CrossRefGoogle Scholar
  78. Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK (2003) Inter- and intra-population variations in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90:374–377PubMedCrossRefGoogle Scholar
  79. Yerkes RM (1939) The life history and personality of the chimpanzee. Am Nat 73:97–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rüdiger Riesch
    • 1
    Email author
  • Virginia Duwe
    • 2
  • Nina Herrmann
    • 2
  • Lisa Padur
    • 2
  • Annemarie Ramm
    • 2
  • Kristin Scharnweber
    • 2
  • Matthias Schulte
    • 2
  • Tanja Schulz-Mirbach
    • 3
  • Madlen Ziege
    • 2
  • Martin Plath
    • 2
    • 4
  1. 1.Department of ZoologyUniversity of OklahomaNormanUSA
  2. 2.Unit of Animal EcologyUniversity of PotsdamPotsdamGermany
  3. 3.Department of Earth and Environmental Sciences, Section PalaeontologyLudwig-Maximilians-University MunichMunichGermany
  4. 4.Department of Ecology and Evolution, Institute of Ecology, Evolution and DiversityJ.W. Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations