Behavioral Ecology and Sociobiology

, Volume 63, Issue 8, pp 1231–1242 | Cite as

Studying shape in sexual signals: the case of primate sexual swellings

  • Elise Huchard
  • Julio A. Benavides
  • Joanna M. Setchell
  • Marie J. E. Charpentier
  • Alexandra Alvergne
  • Andrew J. King
  • Leslie A. Knapp
  • Guy Cowlishaw
  • Michel Raymond


Despite extensive research on animal signals, their shape has been largely overlooked compared to other components such as size or colour. This may represent a substantial gap in our understanding of animal communication, since shape perception is believed to influence various processes in behavioural ecology, from prey–predator interactions to mate recognition. The technical challenge of measuring shape may explain this bias. This study introduces a morphometric method for the analysis of shape in animal signals and applies it to the study of patterns of shape variation in a classical sexual signal: the sexual swellings of female primates. Using elliptic Fourier descriptors (EFDs), we derived quantitative estimates of the two-dimensional shapes of sexual swellings in two primate populations: wild chacma baboons (Papio ursinus) from Namibia and captive mandrills (Mandrillus sphinx) from Gabon. Despite intra-specific variability, the two species exhibited consistently different swelling shapes. Within species, our analysis further showed more variation in swelling shape between females than across consecutive oestrous cycles of the same female. Using human judges, we confirmed that individual shape differences were visually detectable within both species. Finally, the relationships between individual traits and swelling shape were investigated, revealing age-associated variation in swelling shape in both species. Our study illustrates the high potentialities of EFDs to analyse patterns of shape variation at various scales: not only between species but also between and within individuals.


Sexual swellings Multi-component signals Biological shape Elliptical Fourier descriptors Primates Mandrills Baboons 

Supplementary material

265_2009_748_MOESM1_ESM.doc (634 kb)
ESM 1(DOC 634 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723CrossRefGoogle Scholar
  2. Alberts SC, Altmann J (1995) Balancing costs and opportunities—dispersal in male baboons. Am Nat 145:279–306CrossRefGoogle Scholar
  3. Altmann J (1980) Baboon mother and infants. Harvard University Press, Cambridge MAGoogle Scholar
  4. Altmann J, Altmann S, Hausfater G (1981) Physical maturation and age estimates of yellow baboons, Papio cynocephalus, in Amboseli National Park, Kenya. Am J Primatol 1:389–399CrossRefGoogle Scholar
  5. Altmann J, Alberts SC (2003) Intraspecific variability in fertility and offspring survival in a non-human primate: behavioral control of ecological and social sources. In: Watcher K, Bulatao RA (eds) offspring: Human Fertility Behavior in a Biodemographic Perspective. National Academy Press., Washington, D.C., pp 140–169Google Scholar
  6. Alvergne A, Faurie C, Raymond M (2007) Differential facial resemblance of young children to their parents: who do children look like more? Evol Hum Behav 28:135–144CrossRefGoogle Scholar
  7. Anderson CM (1986) Female age: male preference and reproductive success in primates. Int J Primatol 7:305–326CrossRefGoogle Scholar
  8. Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJGoogle Scholar
  9. Anderson CM, Bielert CF (1994) Adolescent exaggeration in female catarrhine primates. Primates 35:283–300CrossRefGoogle Scholar
  10. Appleby MC (1983) The probability of linearity in hierarchies. Anim Behav 32:600–608CrossRefGoogle Scholar
  11. Bates DM, Sarkar D (2007) lme4: linear mixed-effects models using S4 classes. In. R package version 0.9975-12, URL
  12. Bielert C, Anderson CM (1985) Baboon sexual swellings and male response: a possible operational mammalian supernormal stimulus and response interaction. Int J Primatol 6:377–393CrossRefGoogle Scholar
  13. Bro-Jørgensen J, Johnstone RA, Evans MR (2007) Uninformative exaggeration of male sexual ornaments in barn swallows. Curr Biol 17:850–855PubMedCrossRefGoogle Scholar
  14. Brooks R, Endler JA (2001) Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution 55:1002–1015PubMedCrossRefGoogle Scholar
  15. Caillaud D, Levrero F, Gatti S, Menard N, Raymond M (2007) Influence of male morphology on male mating status and behavior during interunit encounters in western lowland gorillas. Am J Phys Anthropol 135:379–388CrossRefGoogle Scholar
  16. Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595PubMedCrossRefGoogle Scholar
  17. Catania KC, Hare JF, Campbell KL (2008) Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci U S A 105:571–576PubMedCrossRefGoogle Scholar
  18. Claude J (2008) Morphometrics with R. Springer, BerlinGoogle Scholar
  19. Clutton-Brock TH, Harvey PH (1976) Evolutionary rules and primate societies. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, pp 195–237Google Scholar
  20. Cotton S, Fowler K, Pomiankowski A (2004) Condition dependence of sexual ornament size and variation in the stalk-eyed fly Cyrtodiopsis dalmanni (Diptera : Diopsidae). Evolution 58:1038–1046PubMedGoogle Scholar
  21. Cowlishaw G (1999) Ecological and social determinants of spacing behaviour in desert baboon groups. Behav Ecol Sociobiol 45:67–77CrossRefGoogle Scholar
  22. Currie AJ, Ganeshanandam S, Noiton DA, Garrick D, Shelbourne CJA, Oraguzie N (2000) Quantitative evaluation of apple (Malus x domestica Borkh.) fruit shape by principal component analysis of Fourier descriptors. Euphytica 111:219–227CrossRefGoogle Scholar
  23. de Vries H (1995) An improved test of linearity in dominance hierarchies containing unknown or tied relationships. Anim Behav 50:1375–1389CrossRefGoogle Scholar
  24. Deschner T, Heistermann M, Hodges K, Boesch C (2004) Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Horm Behav 46:204–215PubMedCrossRefGoogle Scholar
  25. Dixson AF (1983) Observations on the evolution and behavioral significance of sexual skin in female primates. Adv Study Behav 13:63–106CrossRefGoogle Scholar
  26. Domb LG, Pagel M (2001) Sexual swellings advertise female quality in wild baboons. Nature 410:204–206PubMedCrossRefGoogle Scholar
  27. Dunbar RIM (1977) Age-dependent changes in sexual skin color and associated phenomena of female gelada baboons. J Hum Evol 6:667–72CrossRefGoogle Scholar
  28. Emery MA, Whitten PL (2003) Size of sexual swellings reflects ovarian function in chimpanzees (Pan troglodytes). Behav Ecol Sociobiol 54:340–351CrossRefGoogle Scholar
  29. Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10:22–29CrossRefGoogle Scholar
  30. Fordyce JA, Nice CC, Forister ML, Shapiro AM (2002) The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species. J Evol Biol 15:871–879CrossRefGoogle Scholar
  31. Freeman H (1974) Computer processing of line drawing images. Comput Surv 6:57–97CrossRefGoogle Scholar
  32. Furuta N, Ninomiya S, Takahashi N, Ohmori H, Ukai Y (1995) Quantitative evaluation of soybean (Glycine max L., Merr.) leaflet shape by principal component scores based on elliptic Fourier descriptor. Breed Sci 45:315–320Google Scholar
  33. Gerhardt HC (1982) Sound pattern recognition in some North American treefrogs (Anura: Hylidae): implications for mate choice. Am Zool 22:581–595Google Scholar
  34. Gesquiere LR, Wango EO, Alberts S, Altmann J (2007) Mechanisms of sexual selection: sexual swellings and estrogen concentrations as fertility indicators and cues for male consort decisions in wild baboons. Horm Behav 51:114–125PubMedCrossRefGoogle Scholar
  35. Gregoire A, McFarlane ML, Faivre B, Evans MR, Cherry MI (2007) Patterns of morphological variation in two sexually dimorphic bird species with different tail shapes. Biol J Linn Soc 91:437–443CrossRefGoogle Scholar
  36. Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 54:1712–1724PubMedGoogle Scholar
  37. Guilford T, Dawkins MS (1993) Receiver psychology and the design of animal signals. Trends Neurosci 16:430–436PubMedCrossRefGoogle Scholar
  38. Hamilton WJ (1984) Significance of paternal investment by primates to the evolution of male-female associations. In: Taub DM (ed) Primate paternalism. Van Nostrand, New York, NY, pp 309–335Google Scholar
  39. Hasson O (1989) Amplifiers and the handicap principle in sexual selection: a different emphasis. Proc R Soc Lond B Biol Sci 235:383–406PubMedCrossRefGoogle Scholar
  40. Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214CrossRefGoogle Scholar
  41. Higham JP, MacLarnon AM, Ross C, Heistermann M, Semple S (2008) Baboon sexual swelling: information content of size and color. Horm Behav 53:452–462PubMedCrossRefGoogle Scholar
  42. Hrdy SB (1981) The woman that never evolved. Harvard University Press, Cambridge, MAGoogle Scholar
  43. Iwata H, Niikura S, Matsuura S, Takano Y, Ukai Y (1998) Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 102:143–149CrossRefGoogle Scholar
  44. Iwata H, Ukai Y (2002) SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J Hered 93:384–385PubMedCrossRefGoogle Scholar
  45. Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc 68:413–471PubMedCrossRefGoogle Scholar
  46. Johnson SE (2003) Life history and the competitive environment: Trajectories of growth, maturation, and reproductive output among chacma baboons. American Journal of Physical Anthropology 120:83–98PubMedCrossRefGoogle Scholar
  47. Johnstone RA (1997) The evolution of animal signals. In: Krebs JR, Davies NB (eds) Behavioural ecology, an evolutionary approach, 4th edn. Blackwell Science, Oxford, UKGoogle Scholar
  48. Kahumbu P, Eley RM (1991) Teeth emergence in wild olive baboons in Kenya and formulation of a dental schedule for ageing wild baboon populations. Am J Primatol 23:1–9CrossRefGoogle Scholar
  49. Kauppinen J, Mappes J (2003) Why are wasps so intimidating: Field experiments on hunting dragonflies (Odonata: Aeshna grandis). Anim Behav 66:505–511CrossRefGoogle Scholar
  50. Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18:236–258CrossRefGoogle Scholar
  51. Littlejohn MJ (1999) The evolution and breakdown of homogamy. In: Foster SA, Endler JA (eds) Geographic variation in behavior. Oxford University Press, Oxford, pp 209–233Google Scholar
  52. Møller AP (1994) Sexual selection and the barn swallow (Hirundo rustica). Oxford University Press, OxfordGoogle Scholar
  53. Møller AP, Tegelström H (1997) Extra-pair paternity and tail ornementation in the barn swallow (Hirundo rustica). Behav Ecol Sociobiol 41:353–360CrossRefGoogle Scholar
  54. Muller MN, Emery Thompson M, Wrangham RW (2006) Male chimpanzees prefer mating with old females. Curr Biol 16:2234–2238PubMedCrossRefGoogle Scholar
  55. Nagel U (1973) Comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatol 19:104–165PubMedCrossRefGoogle Scholar
  56. Norris K (1993) Heritable variation in a plumage indicator of viability in male great tits Parus major. Nature 362:537–539CrossRefGoogle Scholar
  57. Nunn CL (1999) The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Anim Behav 58:229–246PubMedCrossRefGoogle Scholar
  58. Pagel M (1994) The evolution of conspicuous oestrous advertisement in Old World monkeys. Anim Behav 47:1333–1341CrossRefGoogle Scholar
  59. Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167:808–825CrossRefGoogle Scholar
  60. Paul A (2002) Sexual selection and mate choice. Int J Primatol 23:877–904CrossRefGoogle Scholar
  61. Pfennig KS (1998) The evolution of mate choice and the potential for conflict between species and mate-quality recognition. Proc R Soc Lond B Biol Sci 265:1743–1748CrossRefGoogle Scholar
  62. Phillips-Conroy JE, Jolly CJ (1986) Changes in the structure of the baboon hybrid zone in the Awash National Park, Ethiopia. Am J Phys Anthropol 71:337–350CrossRefGoogle Scholar
  63. Pinero JC, Jacome I, Vargas R, Prokopy RJ (2006) Response of female melon fly, Bactrocera cucurbitae, to host-associated visual and olfactory stimuli. Entomol Exp Appl 121:261–269CrossRefGoogle Scholar
  64. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, BerlinGoogle Scholar
  65. Ptacek MB (2000) The role of mating preferences in shaping interspecific divergence in mating signals in vertebrates. Behav Processes 51:111–134PubMedCrossRefGoogle Scholar
  66. Rohlf FJ, Archie JW (1984) A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera, Culicidae). Syst Zool 33:302–317CrossRefGoogle Scholar
  67. Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931PubMedCrossRefGoogle Scholar
  68. Rowell TE (1972) Female reproductive cycles and social behavior in primates. Adv Study Behav 4:69–105CrossRefGoogle Scholar
  69. Setchell JM (1999) Socio-sexual development in the male mandrill (Mandrillus sphinx). PhD Thesis, Cambridge UniversityGoogle Scholar
  70. Setchell JM, Lee PC, et al. (2001) Growth and ontogeny of sexual size dimorphism in the mandrill Mandrillus sphinx. American Journal of Physical Anthropology 115(4):349–360PubMedCrossRefGoogle Scholar
  71. Setchell JM, Lee PC, Wickings EJ, Dixson AF (2002) Reproductive parameters and maternal investment in mandrills (Mandrillus sphinx). Int J Primatol 23:51–68CrossRefGoogle Scholar
  72. Setchell JM, Wickings EJ (2004) Sexual swellings in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behav Ecol 15:438–445CrossRefGoogle Scholar
  73. Setchell JM, Wickings EJ (2006) Mate choice in male mandrills (Mandrillus sphinx). Ethology 112:91–99CrossRefGoogle Scholar
  74. Shaikh AA, Celaya CL, Gomez I, Shaik SA (1982) Temporal relationship of hormonal peaks to ovulation and sex skin deturgescence in the baboon. Primates 23:444–452CrossRefGoogle Scholar
  75. Smuts B, Nicholson N (1989) Reproduction in wild female olive baboons. Am J Primatol 19:229–246CrossRefGoogle Scholar
  76. Strum SC, Western JD (1982) Variations in fecundity with age and environment in olive baboons (Papio anubis). Am J Primatol 3:61–76CrossRefGoogle Scholar
  77. Tort A (2003) Elliptical Fourier functions as a morphological descriptor of the genus Stenosarina (Brachiopoda, Terebratulida, New Caledonia). Math Geol 35:873–885CrossRefGoogle Scholar
  78. van Essen DC, Anderson CH (1995) Information processing strategies and pathways in the primate visual system. In: Zornetzer SF (ed) An introduction to neural and electronic networks, 2nd edn. Academic, New York, pp 45–76Google Scholar
  79. van Schaik CP, van Pradhan GR, van Noordwijk MA (2004) Mating conflict in primates: infanticide, sexual harassment and female sexuality. In: Kappeler P, van Schaik CP (eds) Sexual selection in primates. Cambridge University Press, Cambridge, pp 131–150Google Scholar
  80. Wasser SK, Norton GW, Rhine RJ, Klein N, Kleindorfer S (1998) Ageing and social rank effects on the reproductive system of free-ranging yellow baboons (Papio cynocephalus) at Mikumi National Park, Tanzania. Hum Reprod Updat 4:430–438CrossRefGoogle Scholar
  81. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189PubMedCrossRefGoogle Scholar
  82. Wildt DE, Doyle LL, Stone SC, Harrisson RM (1977) Correlation of perineal swelling with serum ovarian hormone levels, vaginal cytology, and ovarian follicular development during the baboon reproductive cycle. Primates 18:261–270CrossRefGoogle Scholar
  83. Yoshioka Y, Iwata H, Ohsawa R, Ninomiya S (2004) Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis. Ann Bot 94:657–664PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elise Huchard
    • 1
    • 2
  • Julio A. Benavides
    • 1
  • Joanna M. Setchell
    • 3
  • Marie J. E. Charpentier
    • 4
    • 5
  • Alexandra Alvergne
    • 1
  • Andrew J. King
    • 2
    • 6
  • Leslie A. Knapp
    • 7
  • Guy Cowlishaw
    • 2
  • Michel Raymond
    • 1
  1. 1.CNRS-Institut des Sciences de l’Evolution de MontpellierUniversité Montpellier IIMontpellier Cedex 5France
  2. 2.Institute of ZoologyZoological Society of LondonLondonUK
  3. 3.Evolutionary Anthropology Research GroupDurham UniversityDurhamUK
  4. 4.Department of BiologyDuke UniversityDurhamUSA
  5. 5.Centre d’Ecologie Fonctionnelle et Evolutive, Unite Mixte de Recherche 5175Centre National de la Recherche ScientifiqueMontpellier, Cedex 5France
  6. 6.Department of Biological AnthropologyUniversity College LondonLondonUK
  7. 7.Department of Biological AnthropologyUniversity of CambridgeCambridgeUK

Personalised recommendations