Behavioral Ecology and Sociobiology

, Volume 63, Issue 3, pp 381–390 | Cite as

Audience effect alters male but not female mating preferences

  • Martin Plath
  • Katja Kromuszczynski
  • Ralph Tiedemann
Original Paper

Abstract

Males often face strong mating competition by neighboring males in their social environment. A recent study by Plath et al. (Anim Behav 75:21–29, 2008a) has demonstrated that the visual presence of a male competitor (i.e., an audience male) affects the expression of male mating preferences in a poeciliid fish (Poecilia mexicana) with a weaker expression of mating preferences when an audience male observed the focal male. This may be a tactic to reduce sperm competition, since surrounding males likely share intrinsic preferences for female traits or copy mate choice decisions. Here, we examined the hypothesis that a same-sex audience would affect female mate preferences less than male mating preferences. Our hypothesis was based on the assumptions that (1) competition for mates in a fashion that would be comparable in strength to sperm competition or overt male–male aggression is absent among Poecilia females, and (2) P. mexicana females typically form female-biased shoals, such that almost any female mate choice in nature occurs in front of a female audience. Poecilia females (P. mexicana, surface and cave form, and the closely related gynogenetic Poecilia formosa) were given a choice between a large and a small male, and the tests were repeated while a conspecific, a heterospecific, or no audience female (control) was presented. Females spent more time in the neutral zone and, thus, less time near the males during the second part of a trial when an audience was presented, but—consistent with predictions—females showed only slightly weaker expression of mate preferences during the second part of the tests. This decline was not specific to the treatment involving an audience and was significantly weaker than the effect seen in the male sex.

Keywords

Communication networks Female choice Mate preferences Poecilia Sexual selection 

References

  1. Andersson M (1994) Sexual Selection. Princeton University Press, PrincetonGoogle Scholar
  2. Avise JC, Trexler JC, Travis J, Nelson WS (1991) Poecilia mexicana is the recent female parent of the unisexual fish P. formosa. Evolution 45:1530–1533CrossRefGoogle Scholar
  3. Bisazza A, Vaccari G, Pilastro A (2001) Female mate choice in a mating system dominated by male sexual coercion. Behav Ecol 12:59–64Google Scholar
  4. Briggs SE, Godin J-GJ, Dugatkin LA (1996) Mate-choice copying under predation risk in the Trinidadian guppy (Poecilia reticulata). Behav Ecol 7:151–157CrossRefGoogle Scholar
  5. Brooks R (1996) Copying and the repeatability of mate choice. Behav Ecol Sociobiol 39:323–329CrossRefGoogle Scholar
  6. Constanz GD (1984) Sperm competition in poeciliid fishes. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic, New York, pp 465–485Google Scholar
  7. Dugatkin LA (1992) Sexual selection and imitation: females copy the mate choice of others. Am Nat 139:1384–1389CrossRefGoogle Scholar
  8. Dugatkin LA (1996) The interface between culturally-based preferences and genetic preferences: female mate choice in Poecilia reticulata. Proc Natl Acad Sci U S A 93:2770–2773PubMedCrossRefGoogle Scholar
  9. Dugatkin LA (2007) Developmental environment, cultural transmission, and mate-choice copying. Naturwissenschaften 94:651–656PubMedCrossRefGoogle Scholar
  10. Dugatkin LA, Godin J-GJ (1992) Reversal of female mate choice by copying in the guppy (Poecilia reticulata). Proc R Soc Lond B 249:179–184CrossRefGoogle Scholar
  11. Dugatkin LA, Druen M, Godin J-GJ (2002) The disruption hypothesis does not explain mate-choice copying in the guppy (Poecilia reticulata). Ethology 108:1–10CrossRefGoogle Scholar
  12. Doutrelant C, McGregor PK (2000) Eavesdropping and mate choice in female fighting fish. Behaviour 137:1655–1669CrossRefGoogle Scholar
  13. Earley RL, Dugatkin LA (2005) Fighting, mating and networking: pillars of poeciliid sociality. In: McGregor PK (ed) Animal Communication Networks. Cambridge University Press, Cambridge, pp 84–113Google Scholar
  14. Evans JP, Kelley JL, Bisazza A, Finazzo E, Pilastro A (2004) Sire attractiveness influences offspring performance in guppies. Proc R Soc Lond B 271:2035–2042CrossRefGoogle Scholar
  15. Fisher HS, Rosenthal GG (2006) Male swordtails court with an audience in mind. Biol Lett 3:5–7CrossRefGoogle Scholar
  16. Gordon MS, Rosen DE (1962) A cavernicolous form of the Poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 1962:360–368CrossRefGoogle Scholar
  17. Griffiths SW (1997) Schooling decisions in guppies (Poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching. Behav Ecol Sociobiol 45:437–443CrossRefGoogle Scholar
  18. Heubel KU, Hornhardt K, Ollmann T, Parzefall J, Ryan MJ, Schlupp I (2008) Geographic variation in female mate-copying in the species complex of a unisexual fish, Poecilia formosa. Behaviour (in press)Google Scholar
  19. Hose LD, Pisarovicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave. J Cave Karst Stud 61:13–21Google Scholar
  20. Kirkpatrick M, Dugatkin LA (1994) Sexual selection and the evolutionary effects of copying mate choice. Behav Ecol Sociobiol 34:443–449CrossRefGoogle Scholar
  21. Körner KE, Schlupp I, Plath M, Loew ER (2006) Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J Fish Biol 69:54–65CrossRefGoogle Scholar
  22. Lafleur DL, Lozano GA, Selafini M (1997) Female mate-choice copying in guppies, Poecilia reticulata: a reevaluation. Anim Behav 54:579–586PubMedCrossRefGoogle Scholar
  23. MacLaren RD (2007) The effects of male proximity, apparent size, and absolute size on female preferences in the sailfin molly, Poecilia latipinna. Behaviour 143:1457–1472CrossRefGoogle Scholar
  24. MacLaren RD, Rowland WJ, Morgan N (2004) Female preferences for sailfin and body size in the sailfin molly, Poecilia latipinna. Ethology 110:363–379CrossRefGoogle Scholar
  25. Marler CA, Ryan MJ (1997) Origin and maintenance of a female mating preference. Evolution 51:1244–1248CrossRefGoogle Scholar
  26. Matos R, Schlupp I (2005) Performing in front of an audience: signallers and the social environment. In: McGregor PK (ed) Animal Communication Networks. Cambridge University Press, Cambridge, pp 63–83Google Scholar
  27. Megallan K, Pettersson LB, Magurran AE (2005) Quantifying male attractiveness and mating behaviour through phenotypic size manipulation in the Trinidadian guppy, Poecilia reticulata. Behav Ecol Sociobiol 58:366–374CrossRefGoogle Scholar
  28. Mennill DJ, Boag PT, Ratcliffe LM (2003) The reproductive choices of eavesdropping female black-capped chickadees, Poecile atricapillus. Naturwissenschaften 90:577–582PubMedCrossRefGoogle Scholar
  29. Ophir A, Galef BG (2003) Female Japanese quail that “eavesdrop” on fighting males prefer losers to winners. Anim Behav 66:399–407CrossRefGoogle Scholar
  30. Otter K, McGregor PK, Terry AMR, Burford FRL, Peake TM, Dabelsteen T (1999) Do female great tits (Parus major) assess males by eavesdropping? A field study using interactive song playback. Proc R Soc Lond B 266:1305–1309CrossRefGoogle Scholar
  31. Parzefall J (1969) Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschließlich einer Höhlenform von Mollienesia sphenops. Behaviour 33:1–37PubMedCrossRefGoogle Scholar
  32. Parzefall J (1974) Rückbildung aggressiver Verhaltensweisen bei einer Höhlenform von Mollienesia sphenops (Pisces, Poeciliidae). Z Tierpsychol 35:66–84PubMedGoogle Scholar
  33. Parzefall J (1979) Zur Genetik und biologischen Bedeutung des Aggressionsverhaltens von Poecilia sphenops (Pisces, Poeciliidae). Z Tierpsychol 50:399–422Google Scholar
  34. Peters N, Peters G, Parzefall J, Wilkens H (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Int Rev Ges Hydrobiol 58:417–436CrossRefGoogle Scholar
  35. Plath M, Tobler M (2007) Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae, Teleostei): influence of visual and non-visual cues. Acta Ethol 10:81–88CrossRefGoogle Scholar
  36. Plath M, Schlupp I (2008) Parallel evolution leads to reduced shoaling behavior in two cave-dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei). Environ Biol Fish (in press)Google Scholar
  37. Plath M, Tobler M (2008) The evolutionary ecology of the cave molly (Poecilia mexicana, Poeciliidae) from the Cueva del Azufre system. In: Trajano E, Bichuette EM (eds) The Biology of Subterranean Fishes (in press)Google Scholar
  38. Plath M, Parzefall J, Schlupp I (2003) The role of sexual harassment in cave- and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309CrossRefGoogle Scholar
  39. Plath M, Parzefall J, Körner K, Schlupp I (2004) Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601CrossRefGoogle Scholar
  40. Plath M, Heubel KU, García de León FJ, Schlupp I (2005) Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well fed males. Behav Ecol Sociobiol 58:144–151CrossRefGoogle Scholar
  41. Plath M, Seggel U, Burmeister H, Heubel KU, Schlupp I (2006a) Choosy males from the underground: Male mate choice in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Naturwissenschaften 93:103–109PubMedCrossRefGoogle Scholar
  42. Plath M, Rohde M, Schröder T, Taebel-Hellwig A, Schlupp I (2006b) Female mating preferences in blind cave tetras Astyanax fasciatus (Characidae, Teleostei). Behaviour 143:15–32CrossRefGoogle Scholar
  43. Plath M, Makowicz AM, Schlupp I, Tobler M (2007) Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 18:680–688CrossRefGoogle Scholar
  44. Plath M, Blum D, Schlupp I, Tiedemann R (2008a) Audience effect alters mating preferences in Atlantic molly (Poecilia mexicana) males. Anim Behav 75(1):21–29CrossRefGoogle Scholar
  45. Plath M, Blum D, Tiedemann R, Schlupp I (2008b) A visual audience effect in a cavefish. Behaviour 145:931–947CrossRefGoogle Scholar
  46. Porter M, Crandall K (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547CrossRefGoogle Scholar
  47. Ptacek MB, Travis J (1997) Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51:1217–1231CrossRefGoogle Scholar
  48. Pyron M (2003) Female preferences and male–male interactions in zebrafish (Danio rerio). Can J Zool 81:122–125CrossRefGoogle Scholar
  49. Reynolds JD, Gross MR (1992) Female mate preference enhances offspring growth and reproduction in a fish, Poecilia reticulata. Proc R Soc Lond B 250:57–62CrossRefGoogle Scholar
  50. Riesch R, Schlupp I, Plath M (2008) Female sperm-limitation in natural populations of a sexual/asexual mating-complex (Poecilia latipinna, P. formosa. Biol Lett 4:266–269PubMedCrossRefGoogle Scholar
  51. Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. Am Nat 139:S4–S35CrossRefGoogle Scholar
  52. Schartl M, Wilde B, Schlupp I, Parzefall J (1995) Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution 49:827–835CrossRefGoogle Scholar
  53. Schlupp I (2005) The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst 36:399–417CrossRefGoogle Scholar
  54. Schlupp I, Ryan MJ (1996) Mixed-species shoals and the maintenance of a sexual-asexual mating system in mollies. Anim Behav 52:885–890CrossRefGoogle Scholar
  55. Schlupp I, Ryan MJ (1997) Male Sailfin mollies (Poecilia latipinna) copy the mate choice of other males. Behav Ecol 8:104–107CrossRefGoogle Scholar
  56. Schlupp I, Plath M (2005) Male mate choice and sperm allocation in a sexual/asexual mating complex (Poecilia mexicana, P. formosa, Poeciliidae, Teleostei). Biol Lett 1:169–171PubMedCrossRefGoogle Scholar
  57. Schlupp I, Marler C, Ryan MJ (1994) Benefit to male Sailfin mollies of mating with heterospecific females. Science 263:373–374PubMedCrossRefGoogle Scholar
  58. Schlüter A, Parzefall J, Schlupp I (1998) Female preference for symmetrical bars in male Sailfin mollies (Poecilia latipinna). Anim Behav 56:147–153PubMedCrossRefGoogle Scholar
  59. Tobler M, Plath M, Burmeister H, Schlupp I (2006) Black spots and female mating preferences in a sexual/asexual mating complex (Poecilia, Poeciliidae, Teleostei). Behav Ecol Sociobiol 60:159–165CrossRefGoogle Scholar
  60. Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PGD, Tiedemann R, Plath M (2008a) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution (in press)Google Scholar
  61. Tobler M, Schlupp I, Plath M (2008b) Does divergence in female mate choice affect male size distributions in two cave fish populations? Biol Lett (in press)Google Scholar
  62. Westneat DF, Walters A, McCarthy TM, Hatch MI, Hein WK (2000) Alternative mechanisms of nonindependent mate choice. Anim Behav 59:467–476PubMedCrossRefGoogle Scholar
  63. Witte K, Ryan MJ (1998) Male body length influences mate-choice copying in the sailfin molly Poecilia latipinna. Behav Ecol 9:534–539CrossRefGoogle Scholar
  64. Witte K, Noltemeier B (2002) The role of information in mate-choice copying in female sailfin mollies (Poecilia latipinna). Behav Ecol Sociobiol 52:194–202CrossRefGoogle Scholar
  65. Witte K, Ryan MJ (2002) Mate-choice copying in the wild. Anim Behav 63:943–949CrossRefGoogle Scholar
  66. Witte K, Massmann R (2003) Female sailfin mollies, Poecilia latipinna, remember males and copy the choice of others after 1 day. Anim Behav 65:1151–1159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Plath
    • 1
    • 2
    • 3
  • Katja Kromuszczynski
    • 2
  • Ralph Tiedemann
    • 2
  1. 1.Unit of Animal Ecology, Department of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Unit of Evolutionary Biology and Systematic Zoology, Department of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  3. 3.Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations