Flight distance of urban birds, predation, and selection for urban life

Abstract

Numerous species have adapted to humans, especially invasive species associated with humans in towns and cities. Short flight distances of populations adapted to urban environments reflect changes in behavior and physiology, reflecting phenotypic plasticity or evolution. Here, I tested the hypothesis that the decrease in flight distance to a potential predator (an approaching human) reflected adaptation to urbanization, using a data set of flight distances of 44 common species of European birds in different stages of adaptation to urban environments. Urban populations had consistently shorter flight distances than rural populations of the same species. Variation in relative flight distance of urban populations was predicted by the number of generations since urbanization, as expected by a gradual process of adaptation. Furthermore, species with relatively large populations in urban environments would be an indication of local adaptation to urban environments. Relative flight distance of urban population was shorter for species with large populations in urban compared to rural habitats. Species that had adapted to urban environments as shown by short flight distances were less susceptible to predation by the European sparrowhawk Accipiter nisus than species with relatively long flight distances in urban populations. These findings provide evidence consistent with the hypothesis that recent changes in the tameness of urban birds, as reflected by their relatively short flight distances, is an adaptation to the novel urban environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Badyaev AV (1997) Altitudinal variation in sexual dimorphism: a new pattern and alternative hypotheses. Behav Ecol 8:675–690

    Article  Google Scholar 

  2. Barker FK, Barrowclough GF, Groth JG (2001) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc R Soc Lond B 269:295–308

    Article  CAS  Google Scholar 

  3. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci U S A 101:11040–11045

    PubMed  Article  CAS  Google Scholar 

  4. Batten LA (1973) Population dynamics of suburban blackbirds. Bird Study 20:251–258

    Article  Google Scholar 

  5. Bennett PM, Owens IPF (2002) Evolutionary ecology of birds. Oxford University Press, Oxford

    Google Scholar 

  6. Blondel J, Catzeflis F, Perret P (1996) Molecular phylogeny and the historical biogeography of the warblers of the genus Sylvia (Aves). J Evol Biol 9:871–891

    Article  Google Scholar 

  7. Blumstein DT (2006) Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim Behav 71:389–399

    Article  Google Scholar 

  8. Blumstein DT, Fernández-Juricic E (2004) The emergence of conservation behavior. Conservat Biol 18:1175–1177

    Article  Google Scholar 

  9. Burnham KP, Anderson DR (1998) Model selection and inference. Springer, New York

    Google Scholar 

  10. Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale

    Google Scholar 

  11. Cooke AS (1980) Observations on how close certain passerine species will tolerate an approaching human in rural and suburban areas. Biol Conservat 18:85–88

    Article  Google Scholar 

  12. Cramp S, Perrins CM In: The birds of the Western Palearctic. Oxford University Press, Oxford, pp (1977–1994)

  13. Diamond JM (1986) Rapid evolution of urban birds. Nature 324:107–108

    Article  Google Scholar 

  14. Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. John Wiley, New York

    Google Scholar 

  15. Fløystrup A (1920) Fugleliv i kjøbenhavn: iagttagelser fra østre anlæg og botanisk have. Dansk Orn Foren Tidsskr 14:1–60

    Google Scholar 

  16. Fløystrup A (1925) Fugleliv i Kjøbenhavn: Fortsatte iagttagelser fra Østre Anlæg og Botanisk Have. Dansk Orn Foren Tidsskr 19:1–18

    Google Scholar 

  17. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  18. Fletcher QE, Boonstra R (2006) Do captive male meadow voles experience acute stress in response to weasel odour. Can J Zool 84:583–588

    Article  CAS  Google Scholar 

  19. Garland Jr T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Article  Google Scholar 

  20. Gliwicz J, Goszczynski J, Luniak M (1994) Characteristic features of animal populations under synurbanization—the case of the Blackbird and the striped field mouse. Memorabilia Zoologica 49:237–244

    Google Scholar 

  21. Glutz von Blotzheim UN, Bauer KM (1966–1997) In: Handbuch der Vögel Mitteleuropas. Aula-Verlag, Wiesbaden

    Google Scholar 

  22. Gram C (1908) Fuglelivet i København og omegn for halvhundrede aar siden. Dansk Orn Foren Tidsskr 3:27–36

    Google Scholar 

  23. Grell MB (1998) Fuglenes Danmark. Gad, Copenhagen

    Google Scholar 

  24. Hedenström A, Alerstam T (1992) Climbing performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. J Theor Biol 164:19–38

    Google Scholar 

  25. Helbig AJ, Seibold I (1999) Molecular phylogeny of Palearctic-African Acrocephalus and Hippolais (Aves: Sylviidae). Mol Phylogenet Evol 11:246–260

    PubMed  Article  CAS  Google Scholar 

  26. JMP (2000) JMP. SAS Institute Inc, Cary

    Google Scholar 

  27. Jones KE, Purvis A (1997) An optimum body size for mammals? Comparative evidence from bats. Funct Ecol 11:751–756

    Article  Google Scholar 

  28. Klausnitzer B (1989) Verstädterung von Tieren. Neue Brehm-Bücherei, Wittenberg-Lutherstadt

    Google Scholar 

  29. Luniak M, Mulsow R (1988) Ecological parameters in urbanisation of the European blackbird. In: Oullett H (ed) Acta XIX Congr Int Orn. University of Ottawa Press, Ottawa, pp 1787–1793

    Google Scholar 

  30. Marzluff JM, Bowman R, Donnelly RE (2001) In: Avian conservation and ecology in an urbanizing world. Kluwer, New York

    Google Scholar 

  31. Møller AP, Birkhead TR (1994) The evolution of plumage brightness in birds is related to extra-pair paternity. Evolution 48:1089–1100

    Article  Google Scholar 

  32. Møller AP, Nielsen JT (2006) Prey vulnerability in relation to sexual coloration of prey. Behav Ecol Sociobiol 60:227–233

    Article  Google Scholar 

  33. Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    PubMed  Article  Google Scholar 

  34. Møller AP, Nielsen JT, Garamszegi LZ (2008) Risk taking by singing males. Behav Ecol 19:41–53

    Article  Google Scholar 

  35. Mullarney T, Svensson L, Zetterström D, Grant PJ (2000) The complete guide to the birds of Europe. Harper Collins, London

    Google Scholar 

  36. Navarro C, de Lope F, Marzal A, Møller AP (2004) Predation risk, host immune response and parasitism. Behav Ecol 15:629–635

    Article  Google Scholar 

  37. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Irwin, Chicago

    Google Scholar 

  38. Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC). Comp Appl Biosci 11:247–251

    PubMed  CAS  Google Scholar 

  39. Read AF (1987) Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature 328:68–70

    Article  Google Scholar 

  40. Saino N, Romano M, Ferrari RP, Møller AP (2005) Stressed mothers produce low-quality offspring with poor fitness. J Exp Zool 303A:998–1006

    Article  CAS  Google Scholar 

  41. Scheuerlein A, Van’t Hof TJ, Gwinner E (2001) Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaries). Proc R Soc Lond B 268:1575–1582

    Article  CAS  Google Scholar 

  42. Sheldon FH, Slikas B, Kinnarney M, Gill FB, Zhao E, Silverin B (1992) DNA–DNA hybridization evidence of phylogenetic relationships among major lineages of Parus. Auk 109:173–185

    Google Scholar 

  43. Shochat E, Warren PS, Faeth SH, McIntyre NE (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    PubMed  Article  Google Scholar 

  44. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds, a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  45. Sibley CG, Monroe Jr BL (1990) Distribution and taxonomy of birds of the World. Yale University Press, New Haven

    Google Scholar 

  46. Slikas B, Sheldon FH, Gill FB (1996) Phylogeny of titmice (Paridae): I. Estimate of relationships among subgenera based on DNA–DNA hybridization. J Avian Biol 27:70–82

    Article  Google Scholar 

  47. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  48. Stephan B (1999) Die Amsel. Neue Brehm-Bücherei, Wittenberg-Lutherstadt

    Google Scholar 

  49. Svensson L (1984) Identification guide to European passerines. L Svensson, Stockholm

    Google Scholar 

  50. Tabachnick BG, Fidell LS (1996) Using multivariate statistics. HarperCollins, New York

    Google Scholar 

  51. Voelker G, Spellman GM (2004) Nuclear and mitochondrial DNA evidence of polyphyly in the avian superfamily Muscicapoidea. Mol Phylogenet Evol 30:386–394

    PubMed  Article  CAS  Google Scholar 

  52. Walasz K (1990) Experimental investigation of the behavioral differences between urban and forest blackbirds. Acta Zool Cracov 33:235–271

    Google Scholar 

  53. Wingfield JC, Ramenofsky M (1999) Hormones and the behavioral ecology of stress. In: Baum PMH (ed) Stress physiology of animals. Sheffield Academic, Sheffield, pp 1–51

    Google Scholar 

  54. Ylönen H, Eccard JA, Jokinen I, Sundell J (2006) Is the antipredatory response in behaviour reflected in stress measured in faecal corticosteroids in a small rodent. Behav Ecol Sociobiol 60:350–358

    Article  Google Scholar 

Download references

Acknowledgments

E. Flensted-Jensen kindly helped collect data on flight distance and estimate timing of urbanization. W. C. Årestrup also provided estimates of timing of urbanization in common birds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anders Pape Møller.

Additional information

Communicated by E. Korpimäki

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 169 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Møller, A.P. Flight distance of urban birds, predation, and selection for urban life. Behav Ecol Sociobiol 63, 63 (2008). https://doi.org/10.1007/s00265-008-0636-y

Download citation

Keywords

  • Flight distance
  • Invasions
  • Life history
  • Urbanization